[1] 周佳丽, 王宝冬, 马静, 等. 锰基低温SCR脱硝催化剂抗硫抗水性能研究进展 [J]. 环境化学, 2018, 37(4): 782-791. doi: 10.7524/j.issn.0254-6108.2017091904 ZHOU J L, WANG B D, MA J, et al. SO2 and H2O poisoning resistance of manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx [J]. Environmental Chemistry, 2018, 37(4): 782-791(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091904
[2] 张先龙, 马康, 蔡程, 等. MnOx/PG低温SCR催化剂二氧化硫中毒及再生特性 [J]. 环境化学, 2019, 38(6): 1403-1412. doi: 10.7524/j.issn.0254-6108.2018090503 ZHANG X L, MA K, CAI C, et al. Sulfur dioxide poisoning and regeneration characteristics of MnOx/PG low temperature SCR catalysts [J]. Environmental Chemistry, 2019, 38(6): 1403-1412(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090503
[3] LI K, TANG X, YI H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst [J]. Chemical Engineering Journal, 2012, 192: 99-104. doi: 10.1016/j.cej.2012.03.087
[4] MENG L, WANG J, SUN Z, et al. Active manganese oxide on MnOx-CeO2 catalysts for low-temperature NO oxidation: Characterization and kinetics study [J]. Journal of Rare Earths, 2018, 36(2): 142-147. doi: 10.1016/j.jre.2017.05.017
[5] SHANG D, ZHONG Q. High performance of NO oxidation over Co/Zr0.2Ce0.8O2 catalysts prepared by one-pot method[C]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 186(2): 012003.
[6] ZHONG L, YU Y, CAI W, et al. Structure-activity relationship of Cr/Ti-PILC catalysts using a pre-modification method for NO oxidation and their surface species study [J]. Physical Chemistry Chemical Physics, 2015, 17(22): 15036-15045. doi: 10.1039/C5CP00896D
[7] CAI W, ZHAO Y, CHEN M, et al. The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation [J]. Chemical Engineering Journal, 2018, 333: 414-422. doi: 10.1016/j.cej.2017.10.002
[8] MA M, HUANG H, CHEN C, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction [J]. Molecular Catalysis, 2018, 455: 192-203. doi: 10.1016/j.mcat.2018.06.016
[9] ANDREOLI S, DEORSOLA F A, GALLETTI C, et al. Nanostructured MnOx catalysts for low-temperature NOx SCR [J]. Chemical Engineering Journal, 2015, 278: 174-182. doi: 10.1016/j.cej.2014.11.023
[10] VENKATASWAMY P, RAO K N, JAMPAIAH D, et al. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures [J]. Applied Catalysis B:Environmental, 2015, 162: 122-132. doi: 10.1016/j.apcatb.2014.06.038
[11] ATRIBAK I, GUILLEN-HURTADO N, BUENO-LOPEZ A, et al. Influence of the physic-chemical properties of CeO2-ZrO2 mixed oxides on the catalytic oxidation of NO to NO2 [J]. Applied Surface Science, 2010, 256: 7706-7712. doi: 10.1016/j.apsusc.2010.06.042
[12] LEKPHET W, KE T C, SU C, et al. Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications [J]. Applied Surface Science, 2016, 382: 15-26. doi: 10.1016/j.apsusc.2016.04.115
[13] SHEN Q, ZHANG L, SUN N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation [J]. Chemical Engineering Journal, 2017, 322: 46-55. doi: 10.1016/j.cej.2017.02.148
[14] MEGARAJAN S K, RAYALU S, TERAOKA Y, et al. High NO oxidation catalytic activity on non-noble metal based cobalt-ceria catalyst for diesel soot oxidation [J]. Journal of Molecular Catalysis A:Chemical, 2014, 385: 112-118. doi: 10.1016/j.molcata.2014.01.026
[15] WU L, JIANG Q, WANG L, et al. Formation mechanism of yolk-shell LaMnO3 microspheres prepared by P123-template and oxidation of NO [J]. Frontiers of Materials Science, 2019, 13(1): 77-86. doi: 10.1007/s11706-019-0451-6
[16] WANG N, CHU W, ZHANG T, et al. Manganese promoting effects on the Co-Ce-Zr-Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide [J]. Chemical Engineering Journal, 2011, 170(2): 457-463.
[17] AVGOUROPOULOS G, IOANNIDES T. Effect of synthesis parameters on catalytic properties of CuO-CeO2 [J]. Applied Catalysis B:Environmental, 2006, 67(1): 1-11.
[18] REDDY B M, RAO K N, BHARALI P. Copper promoted cobalt and nickel catalysts supported on ceria-alumina mixed oxide: Structural characterization and CO oxidation activity [J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8478-8486.
[19] TAN R, ZHU Y. Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas [J]. Applied Catalysis B:Environmental, 2005, 58(1): 61-68.
[20] ZHAO Z, YANG X, WU Y. Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO [J]. Applied Catalysis B:Environmental, 1996, 8(3): 281-297. doi: 10.1016/0926-3373(95)00067-4
[21] WU Y, YU T, DOU B S, et al. A comparative study on perovskite-type mixed oxide catalysts A′xA1-xBO3-λ (A′= Ca, Sr, A= La, B= Mn, Fe, Co) for NH3 oxidation [J]. Journal of Catalysis, 1989, 120(1): 88-107. doi: 10.1016/0021-9517(89)90253-4
[22] SI R, ZHANG Y W, LI S J, et al. Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2 (x=0-0.8) solid solutions: A strong correlation between oxygen storage capacity and lattice strain [J]. The Journal of Physical Chemistry B, 2004, 108(33): 12481-12488. doi: 10.1021/jp048084b
[23] REDDY B M, BHARALI P, SAIKIA P, et al. Structural characterization and catalytic activity of nanosized CexM1-xO2 (M= Zr and Hf) mixed oxides [J]. The Journal of Physical Chemistry C, 2008, 112(31): 11729-11737. doi: 10.1021/jp802674m
[24] POOLE JR C P, ITZEL JR J F. Optical reflection spectra of chromia-alumina [J]. The Journal of Chemical Physics, 1963, 39(12): 3445-3455. doi: 10.1063/1.1734213
[25] LIU L J, LIU B, DONG L H, et al. In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts [J]. Applied Catalysis B:Environmental, 2009, 90: 578-586. doi: 10.1016/j.apcatb.2009.04.019