[1] NORVIU K W, YU J K, CHI Y, et al. Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and hotocatalysis [J]. Journal of Materials Research, 2018, 33(4): 467-481. doi: 10.1557/jmr.2018.16
[2] 齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MOS2复合光催化剂及其光催化制氢活性 [J]. 环境化学, 2016, 35(5): 1027-1034. doi: 10.7524/j.issn.0254-6108.2016.05.2015112403 QI Z, WANG X, LI L S. Development of TiO2 /MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light [J]. Environmental Chemistry, 2016, 35(5): 1027-1034(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015112403
[3] 赵真艺, 沈鑫怡, 陈定宁, 等. NH2-nFe3O4@ZnO@Ce磁性复合材料的制备及其对三氯酚污染物的光催化降解 [J]. 环境化学, 2020, 39(3): 643-652. doi: 10.7524/j.issn.0254-6108.2019080501 ZHAO Z Y, SHEN X Y, CHEN D N, et al. Preparation of NH2-nFe3O4@ZnO@Ce magnetic composite and its photocatalytic degradation of trichlorophenol [J]. Environmental Chemistry, 2020, 39(3): 643-652(in Chinese). doi: 10.7524/j.issn.0254-6108.2019080501
[4] GU L, WEI H H, PENG Z J, et al. Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment [J]. Journal of Materials Research, 2016, 32(4): 748-756.
[5] TAN H Q, ZHAO Z, ZHU W B, et al. Oxygen vacancyenhanced photocatalytic activity of pervoskite SrTiO3 [J]. Acs Appl Mater Interfaces, 2014, 21: 19184-19190.
[6] FU X, LI H, LV R, et al. Synthesis of Mn2+ doped ZnS quantum dots/ZIF-8 composite and its applications as a fluorescent probe for sensing Co2+ and dichromate [J]. Journal of Solid State Chemistry, 2018, 264: 26-35.
[7] JIANG J Z, JIA Y S, WANG Y B, et al. Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La, Cr) under visible-light irradiation: The relationship of doping and performance [J]. Applied Surface Science, 2019, 486: 93-101. doi: 10.1016/j.apsusc.2019.04.261
[8] JIN S W, SHU Y, QI W Z, et al. Influences of the factors on photocatalysis of fluorine-doped SrTiO3 made by mechanochemical [J]. Solid State Ionics, 2004, 172: 191-195. doi: 10.1016/j.ssi.2004.05.016
[9] SHAH Z H, GE Y, YE W, et al. Visible light activation of SrTiO3 by loading Ag/AgX (X = Cl, Br) for highly efficient plasmon-enhanced photocatalysis [J]. Materials Chemistry and Physics, 2017, 198: 36-73.
[10] RAHMAN I Q, AHMAD M, MISRA S K, et al. Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light [J]. Journal of Nanoence & Nanotechnology, 2012, 12: 7181-7186.
[11] ATKINSON I, PARVULESCU V, PANDELE CUSU J, et al. Influence of preparation method and nitrogen (N) doping on properties and photo-catalytic activity of mesoporous SrTiO3 [J]. Journal of Photochemistry & Photobiology A Chemistry, 2018, 368: 12-41.
[12] ZHANG C, JIA Y, JING Y, et al. DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3 [J]. Physica B:Condensed Matter, 2012, 407: 4649-4654. doi: 10.1016/j.physb.2012.08.038
[13] YANG D, ZHAO X, ZOU X, et al. Removing Cr (Ⅵ) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates [J]. Chemosphere, 2019, 215: 586-594. doi: 10.1016/j.chemosphere.2018.10.068
[14] ZhOU D D, ZHAI P P, HU G T, et al. Upconversion luminescence and enhanced photocatalytic hydrogen production for Er3+ doped SrTiO3 nanopaeticles [J]. Chemical Physics Letters, 2018, 711: 77-85. doi: 10.1016/j.cplett.2018.09.024
[15] LUO Y, DEG B, PU Y, et al. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation [J]. Applied Catalysis B:Environmental, 2019, 247: 1-25. doi: 10.1016/j.apcatb.2019.01.089
[16] SHAH Z H, GE Y, YE W, et al. Visible light activation of SrTiO3 by loading Ag/AgX (X = Cl, Br) for highly efficient plasmon-enhanced photocatalysis [J]. Materials Chemistry and Physics, 2017, 198: 73-78. doi: 10.1016/j.matchemphys.2017.05.002
[17] ANITHA B G, DEVI L G. Study of reaction dynamics of photocatalytic degradation of 4-Chlorophenol using SrTiO3, sulfur doped SrTiO3, silver metallized SrTiO3 and silver metallized sulfur doped SrTiO3 catalysts: Detailed analysis of kinetic results [J]. Surfaces and Interfaces, 2019, 16: 50-58. doi: 10.1016/j.surfin.2019.04.009
[18] KAVITHA V, MAHALINGAM P, JEYANTHINATH M, et al. Optical and structural properties of ungsten-doped barium strontium titanate [J]. Materials Today:Proceedings, 2019, 11: 1-4. doi: 10.1016/j.matpr.2018.12.097
[19] KAVIYARASAN K, VINOTHV, et al. Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu2O@TiO2 Heterojunction Nanocomposites [J]. Ultrasonics Sonochemistry, 2019, 51: 223-246. doi: 10.1016/j.ultsonch.2018.10.022
[20] WU G L, XIAO L S, GUO L S, et al. Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO3 nanocube coated CdS microsphere heterojunctions [J]. RSC Advances, 2016, 24: 19878-19902.
[21] DUAN C L, SONG J L, WANGB Y, et al. Lactic acid assisted solvothermal synthesis of BiOClxI1–x solid solutions as excellent visible light photocatalysts [J]. Chemical Research in Chinese Universities, 2019, 236: 326-334.
[22] HWANG D W, KIM H G, LEE J S, et al. Photocatalytic hydrogen production from water over M-Doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation [J]. Journal of Physical Chemistry B, 2015, 109: 2093-2102.
[23] GUAN X J, GUO L J, et al. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation [J]. ACS Catalysis, 2014, 4: 3020-3027. doi: 10.1021/cs5005079
[24] LIU R R, JI Z J, WANG J, et al. Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV–vis and visible light photocatalytic activity [J]. Microporous and Mesoporous Materials, 2018, 266: 268-275. doi: 10.1016/j.micromeso.2018.03.009
[25] DING J F, LONG G Y, LUO Y, et al. Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV–vis irradiation: Efficacy, kinetics and mechanism [J]. Journal of Hazardous Materials, 2018, 355: 74-106. doi: 10.1016/j.jhazmat.2018.05.014
[26] WANG P, JIA C C J, LI J, et al. Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance [J]. Journal of Alloys and Compounds, 2018, 780: 660-690.
[27] NG J W, XU S P, ZHANG X W, et al. Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting [J]. Advanced Functional Materials, 2010, 20: 4287-4295. doi: 10.1002/adfm.201000931
[28] SHEN H F, WEI H Y, PAN Z D, et al. Preparation and characterization of SrTiO3-Ag/AgCl hybrid composite with promoted plasmonic visible light excited photocatalysis [J]. Applied Surface Science, 2017, 423: 403-446. doi: 10.1016/j.apsusc.2017.06.023
[29] HU C C, HUANG H X, LIN Y F, et al. Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 264-273. doi: 10.1016/j.jtice.2018.11.020
[30] AKHUNDI A, AZIZ H A. Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant [J]. Applied Surface Science, 2015, 358: 261-269. doi: 10.1016/j.apsusc.2015.08.149
[31] WAN S, OU M, ZHONG Q, et al. Z-scheme CaIn2S4/Ag3PO4 nanocomposite with superior photocatalytic NO removal performance: Fabrication, characterization and mechanistic study [J]. New Journal of Chemistry, 2018, 42(1): 318-326. doi: 10.1039/C7NJ03588H