[1] YANG P, DROHAN P J, YANG M, et al. Spatial variability of heavy metal ecological risk in urban soils from Linfen, China [J]. Catena, 2020, 190: 104554. doi: 10.1016/j.catena.2020.104554
[2] LU F, ASTRUC D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants [J]. Coordination Chemistry Reviews, 2020, 408: 213180. doi: 10.1016/j.ccr.2020.213180
[3] LYU H H, TANG J C, CUI M K, et al. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis applications, and mechanisms [J]. Chemosphere, 2020, 246: 125609. doi: 10.1016/j.chemosphere.2019.125609
[4] ZHAO X, LIU W, CAI Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation [J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019
[5] CHANG D, CHEN T, LIU H, et al. A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution [J]. The Chemical Engineering Journal, 2014, 244: 264-272. doi: 10.1016/j.cej.2014.01.095
[6] YAN W, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up: recent developments and future outlook [J]. Environmental ence: Processes & Impacts, 2013, 15(1): 63-77.
[7] SHEKARRIZ M, TAGHIPOOR S, ALIAKBARI F H, et al. Optimal synthesis and nitrate and mercury removal ability of microemulsion-made iron nanoparticles [J]. International Journal of Nanoparticles, 2010, 3(2): 123-137. doi: 10.1504/IJNP.2010.034846
[8] ZHANG Y, LI Y, LI J, et al. Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay [J]. Chemical Engineering Journal, 2011, 171(2): 526-531. doi: 10.1016/j.cej.2011.04.022
[9] MUELLER N C, BRAUN J, BRUNS J, et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe [J]. Environmental Science & Pollution Research, 2012, 19(2): 550-558.
[10] RIBAS D, CERNIK M, MARTÍ V, et al. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina [J]. Journal of Nanoparticle Research, 2016, 18(7): 181. doi: 10.1007/s11051-016-3490-2
[11] 刘银, 王静, 张明旭, 等. 机械球磨法制备纳米材料的研究进展 [J]. 材料导报, 2003, 17(7): 20-22. doi: 10.3321/j.issn:1005-023X.2003.07.006 LIU Y, WANG J, ZHANG M X, et al. Research progress in the preparation of nanomaterials by mechanical ball milling [J]. Materials Herald, 2003, 17(7): 20-22(in Chinese). doi: 10.3321/j.issn:1005-023X.2003.07.006
[12] LYU J, LIDER A and KUDIIAROV V. Using ball milling for modification of the hydrogenation/dehydrogenation process in magnesium-based hydrogen storage materials: an overview [J]. Matels, 2019, 9(7): 768.
[13] REN T F, YANG S Y, WU S, et al. High-energy ball milling enhancing the reactivity of microscale zero-valent aluminum toward the activation of persulfate and the degradation of trichloroethylene [J]. Chemical Engineering Journal, 2019, 374: 100-111. doi: 10.1016/j.cej.2019.05.172
[14] PETERSON S C, JACKSON M A, KIM S, et al. Increasing biochar surface area: Optimization of ball milling parameters [J]. Powder Technology, 2012, 228: 115-120. doi: 10.1016/j.powtec.2012.05.005
[15] GHARSALLAH H I, MAKHLOUF T, SAURINA J, et al. Effect of boron addition on structural and magnetic properties of nanostructured Fe75Al25 alloy prepared by high energy ball milling [J]. Materials Letters, 2016, 181: 21-24. doi: 10.1016/j.matlet.2016.05.190
[16] AMBIKA S, DEVASENA M, NAMBI I M. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction [J]. Journal of Environmental Management, 2016, 181: 847-855. doi: 10.1016/j.jenvman.2016.06.054
[17] 魏德强, 史绍远, 李新凯. 高能球磨混粉技术制备Cu/SiC混合粉末的工艺 [J]. 特种铸造及有色合金, 2015, 35(6): 565-568. WEI D Q, SHI S Y, LI X K. High energy ball milling powder mixing technology for the preparation of music mixed powder [J]. Special Casting and Nonferrous Alloys, 2015, 35(6): 565-568(in Chinese).
[18] 邹伟东. 转速和填充率对球磨机粉磨效果的影响[D]. 广州: 华南理工大学, 2016. ZOU W D. The effect of rotation speed and filling rate on the grinding effect of ball mill[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
[19] 郝万军, 田秋娟, 蔡云光. 球料比对球磨机工作性能的影响数值分析 [J]. 矿山机械, 2010, 38(23): 72-75. HAO W J, TIAN Q J, CAI Y G. Numerical analysis of the effect of ball-material ratio on the performance of ball mill [J]. Mining Machinery, 2010, 38(23): 72-75(in Chinese).
[20] NOVÁK F, PRŮŠA K, NOVÁ, et al. Application of mechanical alloying in synthesis of intermetallics [J]. Acta Physica Polonica A, 2018, 134(3): 120-123.
[21] MHADHBI M, KHITOUNI M, ESCODA L, et al. Characterization of mechanically alloyed nanocrystalline Fe(Al): Crystallite size and dislocation density [J]. Journal of Nanomaterials, 2010, 2010: 1-8.
[22] SADEGHI A R, MOSTAJABODAVEH H, BABAKHANI A, et al. Effects of milling and heat treatment on the synthesis of NiTi powders [J]. Journal of Wuhan University of Technology, 2017, 32(5): 172-178.
[23] 许宝松, 陈琦, 邱奔, 等. 过程控制剂对球磨法制备纳米硅粉的影响 [J]. 功能材料, 2018, 49(12): 211-222. XU B S, CHEN Q, QIU B, et al. Effect of process control agent on the preparation of nanometer silicon powder by ball milling [J]. Functional Materials, 2018, 49(12): 211-222(in Chinese).
[24] 刘培, 刘博古, 张倩倩, 等. 机械球磨法在纳米储氢材料制备中的应用 [J]. 化工新型材料, 2019, 47(3): 15-19. LIU P, LIU B G, ZHANG Q Q, et al. Application of mechanical ball milling method in the preparation of nano hydrogen storage materials [J]. New Chemical Materials, 2019, 47(3): 15-19(in Chinese).
[25] HAHN H. Gas phase synthesis of nanocrystalline materials [J]. Nanostructured Materials, 1997, 9(1-8): 0-12.
[26] 张林, 张昌文, 王永娟. Fe-ZnSe纳米复合颗粒膜的制备和磁电阻效应 [J]. 微细加工技术, 2008(6): 14-33. ZHANG L, ZHANG C W, WANG Y J. Preparation of Fe-ZnSe nanocomposite particle film and magnetoresistance effect [J]. Microfabrication Technology, 2008(6): 14-33(in Chinese).
[27] SUN L, WANG C, ZHOU Y, et al. Flowing nitrogen assisted-arc discharge synthesis of nitrogen-doped single-walled carbon nanohorns [J]. Applied Surface Science, 2013, 277: 88-93. doi: 10.1016/j.apsusc.2013.04.006
[28] 肖凯军, 代佳丽, 何其, 等. 非离子表面活性剂作用下纳米零价铁的制备及其表征 [J]. 现代食品科技, 2015, 31(9): 138-144. XIAO K J, DAI J L, HE Q, et al. Preparation and characterization of nano-zero-valent iron under the action of nonionic surfactants [J]. Modern Food Science and Technology, 2015, 31(9): 138-144(in Chinese).
[29] SUNKARA B, ZHAN J, HE J, et al. Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons [J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2854-2862.
[30] COSTA, MOURA, ARDISSON, et al. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J]. Applied Catalysis B Environmental, 2008, 83(1-2): 131-139. doi: 10.1016/j.apcatb.2008.01.039
[31] 王宁, 金明江, 李家瑶, 等. 脉冲电沉积制备Fe-Pd合金薄膜 [J]. 材料科学与工程学报, 2014, 32(3): 324-330. WANG N, JIN M J, LI J Y, et al. Fe-Pd alloy thin film prepared by pulse electrodeposition [J]. Journal of Materials Science and Engineering, 2014, 32(3): 324-330(in Chinese).
[32] 王薇, 金朝晖, 李铁龙. 包覆型纳米零价铁的制备及其去除三氯乙烯的研究 [J]. 中国环境科学, 2009, 29(8): 811-815. doi: 10.3321/j.issn:1000-6923.2009.08.006 WANG W, JIN Z H, LI T L. Preparation of coated nano-zero-valent iron and its research on removal of trichloroethylene [J]. Environmental Science in China, 2009, 29(8): 811-815(in Chinese). doi: 10.3321/j.issn:1000-6923.2009.08.006
[33] FU X, ZHANG J, ZHAO H, et al. Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field [J]. Separation and Purification Technology, 2020, 230: 115886. doi: 10.1016/j.seppur.2019.115886
[34] ZHANG D, LI Y, SUN A, et al. Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods [J]. Science of The Total Environment, 2019, 694: 133701. doi: 10.1016/j.scitotenv.2019.133701
[35] IRAVANI, SIAVASH. Green synthesis of metal nanoparticles using plants [J]. Green Chemistry, 2011, 13(10): 2638. doi: 10.1039/c1gc15386b
[36] MARAT I, ARSTAN M, TIMUR J, et al. Impact of chromium and boron compounds on the reproductive function in rats [J]. Toxicology and Industrial Health, 2018, 34(6): 365-374. doi: 10.1177/0748233718759162
[37] GOPAL G, SANKAR H, NATARAJAN C, et al. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study [J]. Journal of Environmental Management, 2020, 254: 109812. doi: 10.1016/j.jenvman.2019.109812
[38] AKBAR, SOLIEMANZADEH, MAJID, et al. The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments [J]. Microporous & Mesoporous Materials, 2017, 239: 60-69.
[39] VISENTIN C, Braun A B, THOMÉ A, et al. Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation, Journal of Cleaner Production, 2019, 231: 307-319.
[40] QUARESMA S, ANDRE V, FERNANDES A, et al. Mechanochemistry – a green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-in-spired metal-organic frameworks [J]. Inorganica Chimica Acta, 2017, 455: 309-318. doi: 10.1016/j.ica.2016.09.033
[41] 周华, 张晓华, 熊丽凤, 等. 超声波辅助纳米零价铁-牡蛎壳材料处理As(Ⅲ)废水的研究 [J]. 水处理技术, 2017, 43(9): 47-51. ZHOU H, ZHANG X H, XIONG L F, et al. Ultrasound-assisted treatment of As(Ⅲ) wastewater with nano-zero-valent iron-oyster shell materials [J]. Water Treatment Technology, 2017, 43(9): 47-51(in Chinese).
[42] 葛兴彬, 王振虹, 郭楚奇, 等. 纳米零价铁的生态毒性效应研究进展 [J]. 生态毒理学报, 2015, 10(3): 28-37. GE X B, WANG Z H, GUO C Q, et al. Research progress on the ecotoxic effect of nano-zero-valent iron [J]. Journal of Ecotoxicology, 2015, 10(3): 28-37(in Chinese).
[43] 李虹, 吕小凡, 马溢阳, 等. 超声协同Fe-0@Fe3O4降解四氯化碳 [J]. 环境科学学报, 2018, 38(7): 2650-2658. LI H, LÜ X F, MA Y Y, et al. Ultrasound cooperates with Fe-0 @ Fe3O4 to degrade carbon tetrachloride [J]. Journal of Environmental Science, 2018, 38(7): 2650-2658(in Chinese).
[44] DANISH M, GU X, LU S, et al. An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite [J]. Applied Catalysis A General, 2017, 531: 177-186. doi: 10.1016/j.apcata.2016.11.001
[45] 潘煜, 孙力平, 陈星宇, 等. CMC改性纳米Fe/Cu双金属模拟PRB去除地下水中2, 4-二氯苯酚 [J]. 中国环境科学, 2019, 39(9): 3789-3796. doi: 10.3969/j.issn.1000-6923.2019.09.023 PAN Y, SUN L P, CHEN X Y, et al. Removal of 2, 4-dichlorophenol in groundwater by CMC modified nano Fe/Cu bimetallic simulated PRB [J]. Chinese Journal of Environmental Science, 2019, 39(9): 3789-3796(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.09.023
[46] 郭汶俊, 张永祥, 井琦, 等. CMS包覆纳米零价铁去除2, 4-二氯酚的条件优化 [J]. 环境工程学报, 2018, 12(12): 3289-3296. doi: 10.12030/j.cjee.201806032 GUO W J, ZHANG Y X, JING Q, et al. Optimization of conditions for removal of 2, 4-dichlorophenol by CMS-coated nano-zero iron [J]. Journal of Environmental Engineering, 2018, 12(12): 3289-3296(in Chinese). doi: 10.12030/j.cjee.201806032
[47] WU H H, WEI W X, XU C, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI) [J]. Ecotoxicology and Environmental Safety, 2020, 188: 109902. doi: 10.1016/j.ecoenv.2019.109902
[48] LI H, QIU Y, WANG X, et al. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1, 1, 1-trichloroethane under various reaction conditions [J]. Chemosphere, 2017, 169: 534-541. doi: 10.1016/j.chemosphere.2016.11.117
[49] DE A, DE A K, PANDA G S, et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal: India [J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1700-1708.
[50] AKHGAR B N, POURGHAHRAMANI P. Implementation of sonochemical leaching for preparation of nano zero-valent iron (NZVI) from natural pyrite mechanochemically reacted with Al [J]. International Journal of Mineral Processing, 2017, 164: 1-5. doi: 10.1016/j.minpro.2017.05.002
[51] CHEN D, NI S, CHEN Z. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill [J]. China Particuology, 2007, 5(5): 357-358. doi: 10.1016/j.cpart.2007.05.005
[52] ZHANG Y, YANG B, FAN J, et al. A mechanically synthesized SiO2-Fe metal matrix composite for effective dechlorination of aqueous 2-chlorophenol: the optimum of the preparation conditions [J]. RSC Advances, 2016, 6(80): 76867-76873. doi: 10.1039/C6RA12889K
[53] ZHANG S S, YANG N, NI S Q, et al. One-pot synthesis of highly active Ni/Fe nano-bimetal by simultaneous ball milling and in situ chemical deposition [J]. RSC advances, 2018, 8(47): 26469-26475. doi: 10.1039/C8RA04426K
[54] 刘银, 秦晓英, 张明旭. 纳米γ-Ni-Fe合金的磁电阻 [J]. 材料研究学报, 2003, 17(1): 19-24. doi: 10.3321/j.issn:1005-3093.2003.01.004 LIU Y, QIN X Y, ZHANG M X. Magnetoresistance of Nanometer γ-Ni-Fe Alloy [J]. Journal of Materials Research, 2003, 17(1): 19-24(in Chinese). doi: 10.3321/j.issn:1005-3093.2003.01.004
[55] AAOULLAR D, MADSEN S J, GÜT B, et al. Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition [J]. Carbon, 2017, 124: 170-179. doi: 10.1016/j.carbon.2017.08.043
[56] XU J, PU Y, QI W K, et al. Chemical removal of nitrate from water by aluminum-iron alloys [J]. Chemosphere, 2017, 166: 197-202. doi: 10.1016/j.chemosphere.2016.09.102
[57] LIU X L, YANG Z C, ZHAO M Y, et al. Preparation of silica-supported nanoFe/Ni alloy and its application in viscosity reduction of heavy oil [J]. Micro & Nano Letters, 2015, 10(3): 167-171.