[1] 董慧峪, 季民. 剩余污泥厌氧消化甲烷生成势与产甲烷菌群多样性的比较研究 [J]. 环境科学, 2014, 35(4): 1421-1427. DONG H Y, JI M. Comparison of methane production potential and methanogenic diversity in anaerobic digestion of waste sludge [J]. Environmental Science, 2014, 35(4): 1421-1427(in Chinese).
[2] 搜狐网, 全球及中国污泥处理处置行业发展研究报告(2018)[EB/OL]. [2019-1-28]. https://www.sohu.com/a/291855302_100117564. Sohu. com. Global and China sludge treatment and disposal industry development research report (2018) [EB/OL]. [2019-1-28]. https://www.sohu.com/a/291855302_100117564 (in Chinese).
[3] YANG Y, ZHANG C Q, HU Z Q. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion [J]. Environmental Science- Processes & Impacts, 2013, 15(1): 39-48.
[4] 徐慧敏, 秦卫华, 李中林, 等. 超声联合热碱预处理促进剩余污泥中温厌氧消化研究 [J]. 生态与农村环境学报, 2019, 35(1): 91-97. XU H M, QIN W H, LI Z L, et al. A study on promoting the anaerobic digestion of waste sludge by ultrasonic combined with heat alkali pretreatment [J]. Journal of Ecology and Rural Environment, 2019, 35(1): 91-97(in Chinese).
[5] 张博, 赵益华, 季民, 等. 工业化规模超声波预处理对不同固体浓度污泥厌氧消化性能的影响 [J]. 环境工程学报, 2019, 13(9): 2225-2232. doi: 10.12030/j.cjee.201901003 ZHANG B, ZHAO Y H, JI M, et al. Effect of ultrasonic pretreatment on anaerobic digestion performance of sludge with different solid concentration [J]. Journal of Environmental Engineering, 2019, 13(9): 2225-2232(in Chinese). doi: 10.12030/j.cjee.201901003
[6] LI X, CHEN S S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds [J]. Chemosphere, 2020, 244: 125466. doi: 10.1016/j.chemosphere.2019.125466
[7] GOKCE KB, TIMOTHY A, EMINE UC, et al. Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment [J]. Science of the Total Environment, 2020, 705: 135862. doi: 10.1016/j.scitotenv.2019.135862
[8] 汪辉, 肖庆聪, 赵阳, 等. 基于不同破解方法的市政污泥厌氧消化产气量优化 [J]. 环境工程学报, 2017, 11(1): 572-577. doi: 10.12030/j.cjee.201508213 WANG H, XIAO Q C, ZHAO Y, et al. Optimization of anaerobic digestion gas production of municipal sludge based on different cracking methods [J]. Journal of Environmental Engineering, 2017, 11(1): 572-577(in Chinese). doi: 10.12030/j.cjee.201508213
[9] MENG J, DUAN H R, LI H J, et al. Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study [J]. Water Research, 2020, 172: 115515. doi: 10.1016/j.watres.2020.115515
[10] CHIAVOLA A, D'AMATO E, BONI M R. Effects of low-dosage ozone pre-treatment on the anaerobic digestion of secondary and mixed sludge [J]. Environmental science and pollution research international, 2019, 26(3-4): 35957-35967.
[11] ZHEN G, TAN Y, WU T, et al. Strengthened dewaterability of coke-oven plant oily sludge by altering extracellular organics using Fe(II)-activated persulfate oxidation [J]. Science of the Total Environment, 2019, 688: 1155-1161. doi: 10.1016/j.scitotenv.2019.06.308
[12] PU M J, NIU J F, MARK L, et al. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole [J]. Chemical Engineering Journal, 2020, 394: 125044. doi: 10.1016/j.cej.2020.125044
[13] ZHEN G Y, LU X Q, NIU J, et al. Inhibitory effects of a shock load of Fe(II)-mediated persulfate oxidation on waste activated sludge anaerobic digestion [J]. Chemical Engineering Journal, 2013, 233: 274-281. doi: 10.1016/j.cej.2013.08.038
[14] ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. doi: 10.1016/j.rser.2016.11.187
[15] AMBROSE H W, CHIN C TL, HONG E, et al. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge [J]. Process Safety and Environmental Protection, 2020, 136: 194-202. doi: 10.1016/j.psep.2020.01.032
[16] LEE E, JEWEL C, WANG M, et al. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae [J]. Bioresource Technology, 2017, 228: 9-17. doi: 10.1016/j.biortech.2016.12.072
[17] LIN C Y, LAY C H. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora [J]. International Journal of Hydrogen Energy, 2003, 29(3): 275-281.
[18] NICOLETTA K, GEORGIOS F, SAVVAS A, et al. A review of simple to scientific models for anaerobic digestion [J]. Renewable Energy, 2014, 71: 701-714. doi: 10.1016/j.renene.2014.05.055
[19] PITT R E, CROSS T L, PELL A N, et al. Use of in vitro gas production models in ruminal kinetics [J]. Mathematical biosciences, 1999, 159(2): 145-163. doi: 10.1016/S0025-5564(99)00020-6
[20] RAMAHI M A, KESZTHELYI-SZABÓ G, BESZÉDES S. Improving biogas production performance of dairy activated sludge via ultrasound disruption prior to microwave disintegration. 2020, 81(6): 1231-1241.
[21] YANG Q, YI J, LUO K, et al. Improving disintegration and acidification of waste activated sludge by combined alkaline and microwave pretreatment [J]. Process Safety and Environmental Protection, 2013, 91(6): 521-526. doi: 10.1016/j.psep.2012.12.003
[22] ESWARI P, KAVITHA S, KALIAPPAN S, et al. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions [J]. Environmental science and pollution research international, 2016, 23(13): 13467-13479. doi: 10.1007/s11356-016-6543-2
[23] PASSOS F, FERRER I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production [J]. Water Research, 2015, 68: 364-373. doi: 10.1016/j.watres.2014.10.015
[24] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
[25] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
[26] YIGIT C B, ONUR G A. Critical review for microwave pretreatment of waste-activated sludge before anaerobic digestion [J]. Current Opinion in Environmental Science & Health, 2019, 14: 1-9.
[27] 米记茹, 田立平, 亓华, 等. 过硫酸盐活化方法的研究进展[J/OL]. 工业水处理: 1-12[2020-03-26]. http://kns.cnki.net/kcms/detail/12.1087.X.20200228.1147.012.html. MI J R, TIAN L P, YU H, et al. Advances in the study of persulfate activation methods[J/OL]. industrial water treatment: 1-12[2020-03-26]. http://kns.cnki.net/kcms/detail/12.1087.X.20200228.1147.012.html (in Chinese).
[28] LEE M Y, WANG W L, DU Y, et al. Comparison of UV/H 2 O 2 and UV/PS processes for the treatment of reverse osmosis concentrate from municipal wastewater reclamation [J]. Chemical Engineering Journal, 2020, 388: 124260. doi: 10.1016/j.cej.2020.124260
[29] HOLGER V L, JULIA B, SERGEJ N, et al. Degradation of perfluorinated compounds by sulfate radicals – New mechanistic aspects and economical considerations [J]. Water Research, 2018, 129: 509-519. doi: 10.1016/j.watres.2017.10.067
[30] 郭绍东, 王健, 季斌, 谢世伟. 电解活化过一硫酸盐改善污泥过滤及破解效能 [J]. 华中科技大学学报(自然科学版), 2020, 48(4): 7-11. GUO S D, WANG J, JI B, et al. Electrolytic activation of peroxymonosulfate improves sludge filtration and cracking efficiency [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 7-11(in Chinese).
[31] ZHEN G Y, WANG J H, LU X Q, et al. Effective gel-like floc matrix destruction and water seepage for enhancing waste activated sludge dewaterability under hybrid microwave-initiated Fe(II)-persulfate oxidation process [J]. Chemosphere, 2019, 221: 141-153. doi: 10.1016/j.chemosphere.2019.01.037
[32] ZHEN G Y, LU X Q, Takuro Kobayashi, et al. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation [J]. Chemical Engineering Journal, 2016, 299: 332-341. doi: 10.1016/j.cej.2016.04.118
[33] HAO X D, WEI J, Mark C. M. van Loosdrecht, et al Analysing the mechanisms of sludge digestion enhanced by iron [J]. Water Research, 2017, 117: 58-67. doi: 10.1016/j.watres.2017.03.048
[34] 任宏洋, 彭磊, 王兵, 等. 剩余污泥臭氧化溶胞过程研究 [J]. 安全与环境学报, 2019, 19(4): 1308-1315. REN H Y, PENG L, WANG B, et al. A study on ozonation of dissolved cell in waste sludge [J]. Journal of Safety and Environment, 2019, 19(4): 1308-1315(in Chinese).
[35] YANG G, ZHANG P Y, ZHANG G M, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion [J]. Bioresource Technology, 2015, 192: 126-30. doi: 10.1016/j.biortech.2015.05.076
[36] 陈思思, 杨殿海, 庞维海, 等. 污泥中蛋白类物质厌氧转化影响因素及其促进策略研究进展[J/OL]. 化工进展: 1-11[2020-05-02]. https://doi.org/10.16085/j.issn.1000-6613.2019-1147. CHEN S S, YANG D H, PANG W H, et al. Advances in the study Influencing Factors of Anaerobic Transformation of Protein Substances in Sludge[J/OL]. Chemical progress: 1-11[2020-05-02]. https://doi.org/10.16085/j.issn.1000-6613.2019-1147 (in Chinese).
[37] 梁树焜. ClO_2氧化溶胞耦合超声波细胞破碎的污水处理系统污泥减量研究[D]. 广东: 华南理工大学, 2011. LIANG S K. Study on sludge reduction of sewage treatment system with ClO_2 oxidation lysis coupled with ultrasonic cell disruption[D]. Guangdong: South China University of Technology, 2011(in Chinese).
[38] SERRANO A, SILES J A, MARTÍN M A, et al. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment [J]. Journal of Environmental Management, 2016, 177: 231-9.
[39] PHILIP K, IAN R, STEVEN P, et al. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae [J]. Bioresource technology, 2013, 131: 128-133. doi: 10.1016/j.biortech.2012.12.125
[40] WEI L L, ZHAO Q L, HU K, et al. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time [J]. Water Research, 2011, 45(3): 1472-1480. doi: 10.1016/j.watres.2010.11.003
[41] EL-MASHAD H M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae [J]. Bioresource technology, 2013, 132: 305-312. doi: 10.1016/j.biortech.2012.12.183
[42] ZHEN G Y, Lu X Q, LI Y Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion [J]. Applied Energy, 2014, 128: 93-102. doi: 10.1016/j.apenergy.2014.04.062
[43] PAN Y, ZHI Z X, ZHEN G Y, et al. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms [J]. Fuel, 2019, 253: 40-49. doi: 10.1016/j.fuel.2019.04.084
[44] LI Y B, PARK S Y, ZHU J Y. Solid-state anaerobic digestion for methane production from organic waste [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 821-826. doi: 10.1016/j.rser.2010.07.042
[45] 钱靖华, 田宁宁, 余杰, 等. 城镇污水污泥厌氧消化技术及能源消耗 [J]. 给水排水, 2010, 46(S1): 102-104. QIAN J H, TIAN N N, YU J, et al. Anaerobic digestion technology and energy consumption of urban sewage sludge [J]. Water and Wastewater Engineering, 2010, 46(S1): 102-104(in Chinese).