[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater [J]. Science, 2020, 368(6493): 845. doi: 10.1126/science.aba1510
|
[2] |
JONES F T. A broad view of arsenic [J]. Poultry Science, 2007, 86(1): 2-14. doi: 10.1093/ps/86.1.2
|
[3] |
李雪霞. 对饲料中大量添加有机砷制剂的思考 [J]. 云南畜牧兽医, 2008(6): 35-36. doi: 10.3969/j.issn.1005-1341.2008.06.029
LI X X. Thinking about the large amount of organic arsenic preparation added to feed [J]. Yunnan Journal of Animal Science and Veterinary Medicine, 2008(6): 35-36(in Chinese). doi: 10.3969/j.issn.1005-1341.2008.06.029
|
[4] |
P MANGALGIRI K, ADAK A, BLANEY L. Organoarsenicals in poultry litter:Detection, fate, and toxicity [J]. Environment International, 2015, 75: 68-80. doi: 10.1016/j.envint.2014.10.022
|
[5] |
SILBERGELD E K, NACHMAN K. The environmental and public health risks associated with arsenical use in animal feeds [J]. Annals of the New York Academy of Sciences, 2008, 1140: 346-357. doi: 10.1196/annals.1454.049
|
[6] |
GUPTA S K, LE X C, KACHANOSKY G, et al. Transfer of arsenic from poultry feed to poultry litter:A mass balance study [J]. Science of the Total Environment, 2018, 630: 302-307. doi: 10.1016/j.scitotenv.2018.02.123
|
[7] |
GARBARINO J R, BEDNAR A J, RUTHERFORD D W, et al. Environmental fate of roxarsone in poultry litter.I.Degradation of roxarsone during composting [J]. Environmental Science & Technology, 2003, 37(8): 1509-1514.
|
[8] |
BROWN B L, SLAUGHTER A D, SCHREIBER M E. Controls on roxarsone transport in agricultural watersheds [J]. Applied Geochemistry, 2005, 20(1): 123-133. doi: 10.1016/j.apgeochem.2004.06.001
|
[9] |
FISHER D J, YONKOS L T, STAVER K W. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA [J]. Environmental Science & Technology, 2015, 49(4): 1999-2012.
|
[10] |
HU Y, CHENG H, TAO S, et al. China's ban on phenylarsonic feed additives, A major step toward reducing the human and ecosystem health risk from arsenic [J]. Environmental Science & Technology, 2019, 53(21): 12177-12187.
|
[11] |
QIANG ZM, ADAMS C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics [J]. Water Research, 2004, 38(12): 2874-2890. doi: 10.1016/j.watres.2004.03.017
|
[12] |
JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism [J]. Chemical Engineering Journal, 2017, 309: 577-587. doi: 10.1016/j.cej.2016.10.084
|
[13] |
ADAK A, MANGALGIRI K P, LEE J, et al. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals [J]. Water Research, 2015, 70: 74-85. doi: 10.1016/j.watres.2014.11.025
|
[14] |
NACHMAN K E, BARON P A, RABER G, et al. Roxarsone, inorganic arsenic, and other arsenic species in chicken:A US-based market basket sample [J]. Environmental Health Perspectives, 2013, 121(7): 818-824. doi: 10.1289/ehp.1206245
|
[15] |
LIU X, ZHANG W, HU Y, et al. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS [J]. Microchemical Journal, 2013, 108: 38-45. doi: 10.1016/j.microc.2012.12.005
|
[16] |
孙永学, 陈杖榴. 有机胂添加剂的毒性、代谢及环境行为研究进展 [J]. 动物毒物学, 2004(1): 7-10.
SUN Y X, CHEN Z L. Research Progress on toxicity, metabolism and environmental behavior of organic arsenic additives [J]. Journal of animal toxicology, 2004(1): 7-10(in Chinese).
|
[17] |
ARROYO-ABAD U, MATTUSCH J, MOEDER M, et al. Identification of roxarsone metabolites produced in the system:Soil-chlorinated water-light by using HPLC-ICP-MS/ESI-MS, HPLC-ESI-MS/MS and High Resolution Mass Spectrometry (ESI-TOF-MS) [J]. Journal of Analytical Atomic Spectrometry, 2011, 26(1): 171-177. doi: 10.1039/C0JA00105H
|
[18] |
WANG L, CHENG H. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-Arsanilic acid [J]. Environmental Science & Technology, 2015, 49(6): 3473-3481.
|
[19] |
D'ANGELO E, ZEIGLER G, BECK E G, et al. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields [J]. Science of the Total Environment, 2012, 438: 286-292. doi: 10.1016/j.scitotenv.2012.08.078
|
[20] |
王克俭, 廖新俤. 猪场周围环境中砷的分布及迁移规律研究 [J]. 家畜生态学报, 2005, 26(2): 29-32. doi: 10.3969/j.issn.1673-1182.2005.02.007
WANG K J, LIAO X D. Study on the distribution and migrating disciplinavian of arsenic around the pig farm [J]. Acta Ecologiae Animalis Domastici, 2005, 26(2): 29-32(in Chinese). doi: 10.3969/j.issn.1673-1182.2005.02.007
|
[21] |
SIERRA-ALVAREZ R, CORTINAS I, FIELD J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds [J]. Journal of Hazardous Materials, 2010, 175(1): 352-358.
|
[22] |
奚功芳. 典型有机胂在土壤-蔬菜系统中的迁移残留规律研究[D]. 芜湖: 安徽师范大学, 2014.
XI G F. Study on the migration and residue of typical organoarsenic in soil vegetable system[D].Wuhu: Anhui Normal University, 2014(in Chinese).
|
[23] |
HU Y, ZHANG W, CHENG H, et al. Public health risk of arsenic species in chicken tissues from live poultry markets of Guangdong Province, China [J]. Environmental Science & Technology, 2017, 51(6): 3508-3517.
|
[24] |
ZHU X, WANG Y, LIU C, et al. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis [J]. Chemosphere, 2014, 107: 274-281. doi: 10.1016/j.chemosphere.2013.12.060
|
[25] |
LI S, XU J, CHEN W, et al. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection [J]. Journal of Environmental Sciences, 2016, 47: 39-48. doi: 10.1016/j.jes.2016.01.017
|
[26] |
XIE X, HU Y, CHENG H. Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds [J]. Water Research, 2016, 96: 136-147. doi: 10.1016/j.watres.2016.03.053
|
[27] |
LIU X, ZHANG W, HU Y, et al. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs) [J]. Chemosphere, 2015, 119: 273-281. doi: 10.1016/j.chemosphere.2014.06.067
|
[28] |
CZAPLICKA M, BRATEK A, JAWOREK K, et al. Photo-oxidation of p-arsanilic acid in acidic solutions: Kinetics and the identification of by-products and reaction pathways [J]. Chemical Engineering Journal, 2014, 243: 364-371. doi: 10.1016/j.cej.2014.01.016
|
[29] |
CZAPLICKA M, JAWOREK K, BĄK M. Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7:Kinetics and by-products [J]. Environmental Science and Pollution Research, 2015, 22(21): 16927-16935. doi: 10.1007/s11356-015-4890-z
|
[30] |
CHEN L, LI H, QIAN J. Degradation of roxarsone in UV-based advanced oxidation processes: A comparative study [J]. Journal of Hazardous Materials, 2020: 124558.
|
[31] |
XU T, KAMAT P V, JOSHI S, et al. Hydroxyl radical mediated degradation of phenylarsonic acid [J]. The Journal of Physical Chemistry A, 2007, 111(32): 7819-7824. doi: 10.1021/jp072135y
|
[32] |
ZHENG S, CAI Y, O'SHEA K E. TiO2 photocatalytic degradation of phenylarsonic acid [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210(1): 61-68. doi: 10.1016/j.jphotochem.2009.12.004
|
[33] |
DENG Y, TANG L, ZENG G, et al. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere [J]. Applied Surface Science, 2016, 387: 882-893. doi: 10.1016/j.apsusc.2016.07.026
|
[34] |
XIAO R, GAO L, WEI Z., et al Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical:An experimental and theoretical approach [J]. Environmental Pollution, 2017, 231: 1446-1452. doi: 10.1016/j.envpol.2017.09.006
|
[35] |
LU D, JI F, WANG W, et al. Adsorption and photocatalytic decomposition of roxarsone by TiO2 and its mechanism [J]. Environmental Science and Pollution Research, 2014, 21(13): 8025-8035. doi: 10.1007/s11356-014-2729-7
|
[36] |
MIRANDA C, SANTANDER P, MATSCHULLAT J, et al. Degradation of organoarsenicals by heterogeneous photocatalysis using ZnO, TiO2 and UVA [J]. Journal of Advanced Oxidation Technologies, 2016, 19(2): 276-283.
|
[37] |
MENG J, XU F, YUAN S, et al. Photocatalytic oxidation of roxarsone using riboflavin-derivative as a photosensitizer [J]. Chemical Engineering Journal, 2019, 355: 130-136. doi: 10.1016/j.cej.2018.08.127
|
[38] |
QIN J, LI H, LIN C. Fenton process-affected transformation of roxarsone in paddy rice soils:Effects on plant growth and arsenic accumulation in rice grain [J]. Ecotoxicology and Environmental Safety, 2016, 130: 4-10. doi: 10.1016/j.ecoenv.2016.03.047
|
[39] |
XIE X, HU Y, CHENG H. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process [J]. Water Research, 2016, 89: 59-67. doi: 10.1016/j.watres.2015.11.037
|
[40] |
LIU Y, HU P, ZHENG J, et al. Utilization of spent aluminum for p-arsanilic acid degradation and arsenic immobilization mediated by Fe(Ⅱ) under aerobic condition [J]. Chemical Engineering Journal, 2016, 297: 45-54. doi: 10.1016/j.cej.2016.03.092
|
[41] |
CHEN S, DENG J, YE C, et al. Simultaneous removal of Para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process [J]. Science of the Total Environment, 2020, 742: 140587. doi: 10.1016/j.scitotenv.2020.140587
|
[42] |
CHEN C, LIU L, LI Y, et al. Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate [J]. Journal of Hazardous Materials, 2021, 407: 124559. doi: 10.1016/j.jhazmat.2020.124559
|
[43] |
ZHAO Z, PAN S, YE Y, et al. FeS2/H2O2 mediated water decontamination from p-arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism [J]. Chemical Engineering Journal, 2020, 381: 122667. doi: 10.1016/j.cej.2019.122667
|
[44] |
LI B, WEI D, LI Z., et al Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite:Adsorption and redox transformation [J]. Journal of Hazardous Materials, 2020, 389: 122091. doi: 10.1016/j.jhazmat.2020.122091
|
[45] |
YANG T, WANG L, LIU Y., et al Removal of organoarsenic with ferrate and ferrate resultant nanoparticles:Oxidation and adsorption [J]. Environmental Science & Technology, 2018, 52(22): 13325-13335.
|
[46] |
YANG T, LIU Y, WANG L, et al. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles [J]. Water Research, 2018, 147: 321-330. doi: 10.1016/j.watres.2018.10.012
|
[47] |
XIE X, CHENG H. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(Ⅲ) oxide-hydroxide [J]. Environment International, 2019, 127: 730-741. doi: 10.1016/j.envint.2019.03.059
|
[48] |
XIE X, ZHAO W, HU Y, et al. Permanganate oxidation and ferric ion precipitation (KMnO4-Fe(Ⅲ)) process for treating phenylarsenic compounds [J]. Chemical Engineering Journal, 2019, 357: 600-610. doi: 10.1016/j.cej.2018.09.194
|
[49] |
YANG K, XING B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application [J]. Chemical Reviews, 2010, 110(10): 5989-6008. doi: 10.1021/cr100059s
|
[50] |
CAO Q, HUANG F, ZHUANG Z, et al. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water [J]. Nanoscale, 2012, 4(7): 2423-2430. doi: 10.1039/c2nr11993e
|
[51] |
HU J, TONG Z, HU Z., et al Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes [J]. Journal of Colloid and Interface Science, 2012, 377(1): 355-361. doi: 10.1016/j.jcis.2012.03.064
|
[52] |
POON L, YOUNUS S, WILSON L D. Adsorption study of an organo-arsenical with chitosan-based sorbents [J]. Journal of Colloid and Interface Science, 2014, 420: 136-144. doi: 10.1016/j.jcis.2014.01.003
|
[53] |
JUNG B K, JUN J W, HASAN Z, et al. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8 [J]. Chemical Engineering Journal, 2015, 267: 9-15. doi: 10.1016/j.cej.2014.12.093
|
[54] |
ZHU X, QIAN F, LIU Y, et al. Environmental performances of hydrochar-derived magnetic carbon composite affected by its carbonaceous precursor [J]. RSC Advances, 2015, 5(75): 60713-60722. doi: 10.1039/C5RA07339A
|
[55] |
SARKER M, SONG J Y, JHUNG S H. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks [J]. Journal of Hazardous Materials, 2017, 335: 162-169. doi: 10.1016/j.jhazmat.2017.04.044
|
[56] |
LIU K, HUANG Z, DAI J, et al. Fabrication of amino-modified electrospun nanofibrous cellulose membrane and adsorption for typical organoarsenic contaminants: Behavior and mechanism [J]. Chemical Engineering Journal, 2020, 382: 122775. doi: 10.1016/j.cej.2019.122775
|
[57] |
LV Y, ZHANG R, ZENG S, et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal-organic framework: Adsorption behavior and synergetic mechanism [J]. Chemical Engineering Journal, 2018, 339: 359-368. doi: 10.1016/j.cej.2018.01.139
|
[58] |
CHEN W, HUANG C. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides [J]. Journal of Hazardous Materials, 2012, 227-228: 378-385. doi: 10.1016/j.jhazmat.2012.05.078
|
[59] |
MITCHELL W, GOLDBERG S, AL-ABADLEH H A. In situ ATR-FTIR and surface complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic acid on iron-(oxyhydr)oxides [J]. Journal of Colloid and Interface Science, 2011, 358(2): 534-540. doi: 10.1016/j.jcis.2011.02.040
|
[60] |
CAO S, ZHANG X, HUANG X, et al. Insights into the facet-dependent adsorption of phenylarsonic acid on hematite nanocrystals [J]. Environmental Science: Nano, 2019, 6(11): 3280-3291. doi: 10.1039/C9EN00879A
|
[61] |
HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles [J]. Chemosphere, 2017, 181: 328-336. doi: 10.1016/j.chemosphere.2017.04.049
|
[62] |
LIU J, LI B, WANG G, et al. Facile synthesis of flower-like CoFe2O4 particles for efficient sorption of aromatic organoarsenicals from aqueous solution [J]. Journal of Colloid and Interface Science, 2020, 568: 63-75. doi: 10.1016/j.jcis.2020.02.004
|
[63] |
ZHAO Z, WU P, FANG Z, et al. Selective sequestration of p-arsanilic acid from water by using nano-hydrated zirconium oxide encapsulated inside hyper-cross-linked anion exchanger [J]. Chemical Engineering Journal, 2020, 391: 123624. doi: 10.1016/j.cej.2019.123624
|
[64] |
JUN J, TONG M, JUNG B K, et al. Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water:Plausible Mechanism of Adsorption and Water Purification [J]. Chemistry-A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658
|
[65] |
PANG D, WANG C, WANG P, et al. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers [J]. Chemosphere, 2020, 254: 126829. doi: 10.1016/j.chemosphere.2020.126829
|
[66] |
LI B, ZHU X, HU K, et al. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution [J]. Journal of Hazardous Materials, 2016, 302: 57-64. doi: 10.1016/j.jhazmat.2015.09.040
|
[67] |
ARTS D, ABDUS SABUR M, AL-ABADLEH H A. Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR:Kinetic studies [J]. The Journal of Physical Chemistry A, 2013, 117(10): 2195-2204. doi: 10.1021/jp311569m
|
[68] |
WANG C, ZHANG X, WANG J, et al. A new one-dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics [J]. Applied Organometallic Chemistry, 2020, 34(6): e5637.
|
[69] |
LIU B, LIU Z, WU H, et al. Effective and simultaneous removal of organic/inorganic arsenic using polymer-based hydrated iron oxide adsorbent:Capacity evaluation and mechanism [J]. Science of the Total Environment, 2020, 742: 140508. doi: 10.1016/j.scitotenv.2020.140508
|
[70] |
TIAN C, ZHAO J, ZHANG J, et al. Enhanced removal of roxarsone by Fe3O4@3D graphene nanocomposites: Synergistic adsorption and mechanism [J]. Environmental Science: Nano, 2017, 4(11): 2134-2143. doi: 10.1039/C7EN00758B
|
[71] |
TIAN C, ZHAO J, OU X, et al. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations [J]. Environmental Science & Technology, 2018, 52(6): 3466-3475.
|
[72] |
XU Y, LV J, SONG Y, et al. Efficient removal of low-concentration organoarsenic by Zr-based metal-organic frameworks:Cooperation of defects and hydrogen bonds [J]. Environmental Science:Nano, 2019, 6(12): 3590-3600. doi: 10.1039/C9EN00923J
|
[73] |
FISHER E, DAWSON A M, POLSHYNA G, et al. Transformation of inorganic and organic arsenic by alkaliphilus oremlandiisp. Nov. Strain OhILAs [J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 230-241. doi: 10.1196/annals.1419.006
|
[74] |
HAN J, ZHANG F, CHENG L, et al. Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria [J]. Environmental Science & Technology Letters, 2017, 4(8): 350-355.
|
[75] |
STOLZ J F, PERERA E, KILONZO B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species [J]. Environmental Science & Technology, 2007, 41(3): 818-823.
|
[76] |
GUZMÁN-FIERRO V G, MORAGA R, LEÓN C G, et al. Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone [J]. International Journal of Environmental Science and Technology, 2015, 12(4): 1353-1362. doi: 10.1007/s13762-014-0512-4
|
[77] |
FU Q L, LIU C, ACHAL V, et al. Aromatic arsenical additives (AAAs) in the soil environment: Detection, environmental behaviors, toxicities, and remediation [J]. Advances in Agronomy, 2016, 140: 1-41.
|