[1] |
CLEAVES H J, MICHALKOVA SCOTT A, HILL F C, et al. Mineral-organic interfacial processes: Potential roles in the origins of life[J]. Chemical Society Reviews, 2012, 41(16): 5502-5525. doi: 10.1039/c2cs35112a
|
[2] |
LE FORMAL F, GUIJARRO N, BOURE W S, et al. A Gibeon meteorite yields a high-performance water oxidation electrocatalyst[J]. Energy & Environmental Science, 2016, 9(11): 3448-3455.
|
[3] |
VORLICEK T P, HELZ G R. Catalysis by mineral surfaces: Implications for Mo geochemistry in anoxic environments[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3679-3692. doi: 10.1016/S0016-7037(01)00837-7
|
[4] |
HUANG X, ZHU T, DUAN W, et al. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type[J]. Journal of Hazardous Materials, 2020, 381: 120998. doi: 10.1016/j.jhazmat.2019.120998
|
[5] |
ZHAO H, HUANG X, WANG J, et al. Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite[J]. Minerals Engineering, 2017, 109: 153-161. doi: 10.1016/j.mineng.2017.03.013
|
[6] |
HUANG X, HOU X, ZHAO J, et al. Hematite facet confined ferrous ions as highly efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span[J]. Applied Catalysis B: Environmental, 2016, 181: 127-137. doi: 10.1016/j.apcatb.2015.06.061
|
[7] |
WANG H, CHEN T, CHEN D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation[J]. Applied Catalysis B: Environmental, 2020, 260: 118203. doi: 10.1016/j.apcatb.2019.118203
|
[8] |
WU B, DENG S, WANG H, et al. Insight into the degradation of ammonium dibutyl dithiophosphate by natural pyrrhotite-activated peroxydisulfate: Activation mechanisms, DFT studies[J]. Chemical Engineering Journal, 2020, 401: 126105. doi: 10.1016/j.cej.2020.126105
|
[9] |
XIA D, NG T W, AN T, et al. A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: Natural magnetic sphalerite[J]. Environmental Science & Technology, 2013, 47(19): 11166-11173.
|
[10] |
LI L, LI Y, LI Y, et al. Natural wolframite as a novel visible-light photocatalyst towards organics degradation and bacterial inactivation[J]. Catalysis Today, 2020, 358: 177-183. doi: 10.1016/j.cattod.2019.12.013
|
[11] |
KONDRAT S A, SMITH P J, WELLS P, et al. Stable amorphous georgeite as a precursor to a high-activity catalyst[J]. Nature, 2016, 531(7592): 83-97. doi: 10.1038/nature16935
|
[12] |
李阳, 王芬, 于雷, 等. 催化芬顿氧化处理苯酚废水[J]. 环境工程报, 2017, 11(1): 267-272.
|
[13] |
MARJANI A, ZARE M H, SADEGHI M H, et al. Synthesis of alginate-coated magnetic nanocatalyst containing high-performance integrated enzyme for phenol removal[J]. Journal of Environmental Chemical Engineering, 2020, 9(1): 104884.
|
[14] |
ZHANG C, CHENG F, ZHAO H, et al. Enhanced phenol degradation under different shock-stress in LAC/AS system: The combination effects of LAC toxicity mitigation and microbial community shift[J]. Journal of Water Process Engineering, 2020, 40: 101824.
|
[15] |
MUNOZ M, DE PEDRO Z M, CASAS J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: A review[J]. Applied Catalysis B: Environmental, 2015, 176-177: 249-265. doi: 10.1016/j.apcatb.2015.04.003
|
[16] |
田皓中, 孙娟, 李浩永, 等. 磺胺类制药废水中苯系物的快速同步检测[J]. 环境工程学报, 2020, 14(2): 328-332. doi: 10.12030/j.cjee.201904013
|
[17] |
ZHU Y, ZHU R, XI Y, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review[J]. Applied Catalysis B: Environmental, 2019, 255: 117739.
|
[18] |
ZHANG X, DING Y, TANG H, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236: 251-262. doi: 10.1016/j.cej.2013.09.051
|
[19] |
SAHOO S, PAZHAMALAI P, MARIAPPAN V K, et al. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors[J]. Inorganic Chemistry Frontiers, 2020, 7(7): 1492-1502. doi: 10.1039/C9QI01335K
|
[20] |
DA SILVEIRA SALLA J, DOTTO G L, HOTZA D, et al. Enhanced catalytic performance of CuFeS2 chalcogenide prepared by microwave-assisted route for photo-Fenton oxidation of emerging pollutant in water[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104077. doi: 10.1016/j.jece.2020.104077
|
[21] |
YADAV D K, POSPISIL P. Role of chloride ion in hydroxyl radical production in photosystem II under heat stress: Electron paramagnetic resonance spin-trapping study[J]. Journal of Bioenergetics and Biomembranes, 2012, 44(3): 365-372. doi: 10.1007/s10863-012-9433-4
|
[22] |
SHEN K, CUI Y, ZHANG D, et al. Biomimetic preparation of MoS2-Fe3O4 MNPs as heterogeneous catalysts for the degradation of methylene blue[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104125. doi: 10.1016/j.jece.2020.104125
|
[23] |
HOU C, CHEN Q, WANG C J, et al. Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance Janus electrode for both oxygen and hydrogen evolution under basic conditions[J]. ACS Applied Mater Interfaces, 2016, 8(35): 23037-23048. doi: 10.1021/acsami.6b06251
|
[24] |
LI J, PHAM A N, DAI R, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites[J]. Journal of Hazardous Materials, 2020, 392: 122261. doi: 10.1016/j.jhazmat.2020.122261
|
[25] |
NGUYEN T B, DONG C-D, HUANG C P, et al. Fe-Cu bimetallic catalyst for the degradation of hazardous organic chemicals exemplified by methylene blue in Fenton-like reaction[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104139. doi: 10.1016/j.jece.2020.104139
|
[26] |
KAUR J, SCHOONEN M A. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles[J]. Geochimica et Cosmochimica Acta, 2017, 206: 364-378. doi: 10.1016/j.gca.2017.03.011
|
[27] |
REBELO S L H, MONIZ T, MEDFORTH C J, et al. EPR spin trapping studies of H2O2 activation in metaloporphyrin catalyzed oxygenation reactions: Insights on the biomimetic mechanism[J]. Molecular Catalysis, 2019, 475: 110500.
|
[28] |
YAN G, CHEN J, HUA Z. Roles of H2O2 and OH radical in bactericidal action of immobilized TiO2 thin-film reactor: An ESR study[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207: 153-159. doi: 10.1016/j.jphotochem.2009.03.003
|