[1] 万琼, 雷茹, 王信, 等. 海绵铁填料对城市内河污染物质去除 [J]. 环境化学, 2019, 38(9): 2128-2140. WANG Q, LEI R, WANG X, et al. Removal of pollutants from urban inland rivers by sponge iron packing [J]. Environmental Chemistry, 2019, 38(9): 2128-2140(in Chinese).
[2] 石健, 万杨, 黄鑫, 等. 聚合铁钛混凝剂对印染废水的处理 [J]. 环境工程学报, 2019, 13(5): 1021-1029. doi: 10.12030/j.cjee.201901137 SHI J, WAN Y, HUANG X, et al. Treatment of printing and dyeing wastewater with polymeric iron-titanium coagulant [J]. Journal of Environmental Engineering, 2019, 13(5): 1021-1029(in Chinese). doi: 10.12030/j.cjee.201901137
[3] 龚真萍. 有机改性硅藻土对活性染料染色废水的处理效果 [J]. 毛纺科技, 2014, 42(2): 32-35. doi: 10.3969/j.issn.1003-1456.2014.02.009 GONG Z P. The treatment effect of organic modified kieselguhr on the dyeing wastewater of reactive dye [J]. Wool Spinning Technology, 2014, 42(2): 32-35(in Chinese). doi: 10.3969/j.issn.1003-1456.2014.02.009
[4] FANG H G, PANYS, YINMY, et al. Enhanced photocatalytic activity and mechanism of Ti3C2-OH/Bi2WO6 :Yb3+,Tm3+ towards degradation of RhB under visible and near infrared light irradiation [J]. Materials Research Bulletin, 2020, 121: 110618. doi: 10.1016/j.materresbull.2019.110618
[5] TIAN C, ZHAO H, SUN HL, et al. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism [J]. Chemical Engineering Journal, 2020, 381: 122760. doi: 10.1016/j.cej.2019.122760
[6] 孙凯, 谢道月, 陈文君, 等. 纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展 [J]. 环境化学, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501 SUN K, XIE D M, CHEN W J, et al. Progress in the research on the conversion of phenolic contaminants from natural enzyme-catalyzed water by nano-metal oxides [J]. Environmental Chemistry, 2019, 38(4): 911-921(in Chinese). doi: 10.7524/j.issn.0254-6108.2018061501
[7] 王丽娟, 李晓宁, 陈爱武, 等. 纳米ZnO的制备及其光催化降解印染废水 [J]. 深圳大学学报(理工版), 2019, 36(4): 367-374. WANG L J, LI X N, CHEN A W, et al. Preparation of nanometer ZnO and its photocatalytic degradation of printing and dyeing wastewater [J]. Journal of Shenzhen University (Science and Engineering Edition), 2019, 36(4): 367-374(in Chinese).
[8] 周媛, 多喜, 李成博, 等. 纳米氧化锌的制备及其光催化降解甲基橙的研究 [J]. 内蒙古农业大学学报(自然科学版), 2018, 39(4): 86-94. ZHOU Y, DUO X, LI C B, et al. Preparation of nano-zinc oxide and its photocatalytic degradation of methyl orange [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2018, 39(4): 86-94(in Chinese).
[9] 方梦珍, 高涵超, 覃小红, 等. 静电纺PMMA/LiCl复合纳米纤维膜对盐性和油性气溶胶颗粒物的过滤性能 [J]. 东华大学学报(自然科学版), 2019, 45(3): 345-352, 357. FANG M Z, GAO H C, TAN X H, et al. The filtration performance of the electrostatic spinning PMMA/LiCl composite nanofiber membrane to the aerosol and oily aerosol particles [J]. Journal of DongHua University (Natural Science Edition), 2019, 45(3): 345-352, 357(in Chinese).
[10] 李鑫, 凤权, 武丁胜, 等. PMMA基抗静电纳米纤维的制备及其性能研究 [J]. 化工新型材料, 2016, 44(7): 231-233, 236. LI X, FENG Q, WU D S, et al. Preparation and properties of PMMA based antistatic nanofibers [J]. New Chemical Materials, 2016, 44(7): 231-233, 236(in Chinese).
[11] 王玉浩, 马万彬, 周彦粉, 等. 静电纺聚氨酯纳米纤维膜的制备及其性能研究 [J]. 塑料工业, 2019, 47(8): 151-155. doi: 10.3969/j.issn.1005-5770.2019.08.033 WANG Y H, MA W B, ZHOU Y F, et al. Preparation and properties of electrospun polyurethane nanofiber membrane [J]. The Plastic Industry, 2019, 47(8): 151-155(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.08.033
[12] 李亚静, 唐文英, 王泽颖, 等. 羟基磷灰石/聚氨酯复合纳米纤维制备及其对重金属Cd2+的吸附应用研究 [J]. 塑料工业, 2018, 46(11): 137-140, 158. doi: 10.3969/j.issn.1005-5770.2018.11.031 LI Y J, TANG W Y, WANG Z Y, et al. Preparation of hydroxyapatite/polyurethane composite nanofiber and its adsorption to heavy metal Cd2+ [J]. Plastic Industry, 2018, 46(11): 137-140, 158(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.11.031
[13] LI D, XIONG M, WANG S, et al. Effects of low-temperature plasma treatment on wettability of glass surface: molecular dynamic simulation and experimental study [J]. Applied Surface Science, 2020, 503: 144257. doi: 10.1016/j.apsusc.2019.144257
[14] 贺建强. UHMWPE纤维表面改性及其复合材料界面初步探究[D]. 上海: 东华大学, 2014. HE J Q, Preliminary study on surface modification of UHMWPE fiber and interface of its composites[D]. Shanghai: Donghua University, 2014(in Chinese).
[15] 余璠, 徐晓霞, 张佩华, 等. 低温等离子体处理对PGLA编织线性能的影响 [J]. 东华大学学报(自然科学版), 2019, 45(4): 513-518. YU P, XU X X, ZHANG P H, et al. Effect of low temperature plasma treatment on the properties of PGLA braided wires [J]. Journal of Donghua University (Natural Science Edition), 2019, 45(4): 513-518(in Chinese).
[16] SANGNAL MATT DURANDHARA MURTHY V, VAIDYA U. Improving the adhesion of glass/polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces by open air plasma treatment [J]. International Journal of Adhesion and Adhesives, 2019, 95: 102435. doi: 10.1016/j.ijadhadh.2019.102435
[17] 申晓. 涤纶纤维表面改性处理及其复合材料性能研究[D]. 杭州: 浙江理工大学, 2018. SHEN X. Study on surface modification of polyester fiber and properties of its composites[D]. Hangzhou: Zhejiang University of Science And Technology, 2018(in Chinese).
[18] 汪毅. PE/PP非织造布等离子体改性及其亲水抗静电性能的研究[D]. 上海: 东华大学, 2009. WANG Y. Plasma modification of PE/PP nonwoven fabric and its hydrophilic antistatic properties[D]. Shanghai: Donghua University, 2009(in Chinese).