[1] FANG M, YI N, DI W, et al. Emission and control of flue gas pollutants in CO2 chemical absorption system–A review [J]. International Journal of Greenhouse Gas Control, 2020, 93: 102904. doi: 10.1016/j.ijggc.2019.102904
[2] 王金意, 牛红伟, 刘练波, 等. 燃煤电厂烟气新型CO2吸收剂开发与工程应用 [J]. 热力发电, 2021, 50(1): 54-61. WANG J Y, NIU H W, LIU L B, et al. Development and application of new absorption solvent for CO2 capture fromflue gas ofcoal-fired power plant [J]. Thermal Power Generation, 2021, 50(1): 54-61(in Chinese).
[3] 穆艾伟, 樊俊杰, 江砚池, 等. 混合胺复配溶液对二氧化碳的吸收/解吸 [J]. 环境化学, 2020, 39(2): 409-415. doi: 10.7524/j.issn.0254-6108.2019031001 MU A W, FAN J J, JIANG Y C, et al. CO2 absorption/desorption using aqueous solution blended with mixed amine [J]. Environmental Chemistry, 2020, 39(2): 409-415(in Chinese). doi: 10.7524/j.issn.0254-6108.2019031001
[4] 高洁. 混合乙醇胺吸收剂体系对烟气中CO2捕集性能的研究[D]. 上海: 华东理工大学, 2018. GAO J. Research on carbon capture performance of flue gas by mixed monoethanolamine solvent system[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese).
[5] ZHANG S, SHEN Y, WANG L, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenge [J]. Applied Energy, 2019, 239: 876-897. doi: 10.1016/j.apenergy.2019.01.242
[6] FERRARA G, LANZINI A, LEONE P, et al. Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption [J]. Energy, 2017, 130: 113-128. doi: 10.1016/j.energy.2017.04.096
[7] YU Y S, LU H F, ZHANG T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K [J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634.
[8] RASHIDI H, VALEH-E-SHEYDA P, SAHRAIE S. A multiobjective experimental based optimization to the CO2 captureprocess using hybrid solvents of MEA-MeOH and MEA-water [J]. Energy, 2020, 190: 116430. doi: 10.1016/j.energy.2019.116430
[9] CHEN S M, CHEN S Y, ZHANG Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions [J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. doi: 10.1016/j.ijggc.2016.01.046
[10] YANG D, LV M, CHEN J. Efficient non-aqueous solvent formed by 2-piperidineethanol and ethylene glycol for CO2 absorption [J]. Chemical Communications, 2019, 55: 12483-12486. doi: 10.1039/C9CC06320J
[11] 郭晖. 有机胺/醇醚非水混合体系吸收CO2过程特性研究[D]. 石家庄: 河北科技大学, 2019. GUO H. Research on CO2 absorption process using organic amine/glycol ether non-aqueous blends. Shijiazhuang: Hebei University of Science & Technology, 2019 (in Chinese).
[12] FU K, ZHANG P, WANG L, et al. Viscosity of 2-ethylhexan-1-amine (EHA)-diglyme, EHA-triglyme and EHA-tetraglyme non-aqueous solutions and its effect on initial absorption rate [J]. Journal of Molecular Liquids, 2020, 302: 112518. doi: 10.1016/j.molliq.2020.112518
[13] 陈思铭. 基于乙基乙醇胺的非水溶液法捕集二氧化碳[D]. 大连: 大连理工大学, 2018. CHEN S M. Carbon dioxide capture by ethylethanolamine based nonaqueous solution[D]. Dalian: Dalian University of Technology, 2018 (in Chinese).
[14] 陶梦娜. 非水溶剂/多元胺体系的CO2液固相变吸收基础研究[D]. 杭州: 浙江大学, 2018. TAO M N. The basic study of CO2 liquid-solid phase change absorption with non-aqueous solvent/polyamine system[D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
[15] ZHANG Z, ZHAO W B, NONG J J, et al. Liquid-solid phase-change behavior of diethylenetriamine in nonaqueous systems for carbon dioxide absorption [J]. Energy Technology, 2017, 5(3): 461-468. doi: 10.1002/ente.201600351
[16] 沈遥. TETA-DMCA吸收烟气中二氧化碳的动力学、热力学及机理研究[D]. 杭州: 浙江工业大学, 2019. SHEN Y. Kinetics, thermodynamics and mechanism of TETA-DMCA for carbon dioxide absorption from flue gas[D]. Hangzhou: Zhejiang University of Technology, 2019 (in Chinese).
[17] 郭超, 陈绍云, 陈思铭, 等. 13C NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性 [J]. 化工进展, 2014, 33(11): 3101-3106. GUO C, CHEN S Y, CHEN S M, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine (MEA) solution by using 13C NMR [J]. Chemical Industry and Engineering Process, 2014, 33(11): 3101-3106(in Chinese).
[18] KORTUNOV P V, SISKIN M, BAUGH L S, et al. In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in non-aqueous systems: Evidence for the formation of carbamic acids and zwitterionic species [J]. Energy & Fuels, 2015, 29: 5940-5966.