[1] WATTS R J, TEEL A L. Treatment of contaminated soils and groundwater using ISCO[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006, 10(1): 2-9. doi: 10.1061/(ASCE)1090-025X(2006)10:1(2)
[2] YEN C H, CHEN K F, KAO C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2097-2102.
[3] TUGBA O H, IDIL A A. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. doi: 10.1016/j.cej.2012.11.007
[4] 李婷婷. 热活化过硫酸盐体系降解甲硝唑的研究[D]. 长春: 吉林大学, 2019.
[5] FANG J Y, SHANG C. Bromate formation from bromide oxidation by the UV/persulfate process[J]. Environmental Science & Technology, 2012, 46(16): 8976-8983.
[6] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
[7] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3): 185-203.
[8] 付冬彬, 陈盈盈, 王广生, 等. 超声联合热活化过硫酸盐处理垃圾渗滤液[J]. 水处理技术, 2019, 45(12): 125-128.
[9] KANWARTEJ S S, NEIL R T, JIM B F. Persistence of persulfate in uncontaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(8): 3098-3104.
[10] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871.
[11] LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336.
[12] TEEL A L, ELLOY F C, WATTS R J. Persulfate activation during exertion of total oxidant demand[J]. Chemosphere, 2016, 158: 184-192. doi: 10.1016/j.chemosphere.2016.05.055
[13] LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: Stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898.
[14] LI W, OROZCO R, CAMARGOS N, et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation[J]. Environmental Science & Technology, 2017, 51(7): 3948-3959.
[15] TENG Y G, YANG J, SUN Z J, et al. Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China[J]. Environmental Monitoring and Assessment, 2011, 176(1/2/3/4): 605-620. doi: 10.1007/s10661-010-1607-0
[16] BITTON G, GARLAND E, KONG I C, et al. A direct solid-phase assay specific for heavy metal toxicity. I. methodology[J]. Journal of Soil Contamination, 2008, 5(4): 385-394.
[17] PANICHEV N, MANDIWANA K, MOEMA D, et al. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine[J]. Journal of Hazardous Materials, 2006, 137(2): 649-653. doi: 10.1016/j.jhazmat.2006.03.006
[18] FANG G D, DENG Y M, HUANG M, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science & Technology, 2018, 52(4): 2178-2185.
[19] SPANGGORD R J, SPAIN S F, NISHINA S F, et al. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp[J]. Applied and Environmental Microbiology, 1991, 77: 2444-2448.
[20] LI Q Q, HUANG X C, SU G J, et al. The regular/persistent free radicals and associated reaction mechanism for the degradation of 1,2,4-trichlorobenzene over different MnO2 polymorphs[J]. Environmental Science & Technology, 2018, 52(22): 13351-13360.
[21] HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340. doi: 10.1205/095758298529696
[22] FANG G D, CHEN X R, WU W H, et al. Mechanisms of interaction between persulfate and soil constituents: Activation, free radical formation, conversion, and identification[J]. Environmental Science & Technology, 2018, 52(24): 14352-14361.
[23] HUSSAIN I, LI M Y, ZHANG Y Q, et al. Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3883-3890.
[24] DHAKA S, KUMAR R, KHAN M A, et al. Aqueous phase degradation of methyl paraben using UV-activated persulfate method[J]. Chemical Engineering Journal, 2017, 321: 11-19. doi: 10.1016/j.cej.2017.03.085
[25] JI Y F, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008
[26] FANG G D, WU W H, LIU C, et al. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study[J]. Applied Catalysis B: Environmental, 2017, 202: 1-11. doi: 10.1016/j.apcatb.2016.09.006
[27] WANG S Z, WANG J L. Comparative study on sulfamethoxazole degradation by Fenton and Fe(II)-activated persulfate process[J]. RSC Advances, 2017, 7(77): 48670-48677. doi: 10.1039/C7RA09325J
[28] DING J F, SHEN L L, YAN R P, et al. Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study[J]. Chemosphere, 2020, 261: 127715. doi: 10.1016/j.chemosphere.2020.127715
[29] XU X M, ZONG S Y, CHEN W M, et al. Comparative study of Bisphenol A degradation via heterogeneously catalyzed H2O2 and persulfate: Reactivity, products, stability and mechanism[J]. Chemical Engineering Journal, 2019, 369: 470-479. doi: 10.1016/j.cej.2019.03.099
[30] PENNINGTON D E, HAIM A. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction[J]. Journal of the American Chemical Society, 1968, 90(14): 3700-3704. doi: 10.1021/ja01016a017
[31] BUXTON G V, BARLOW S, MCGOWAN S, et al. The reaction of the ${\rm{SO}}_3^{ \cdot - }$ radical with FeII in acidic aqueous solution: A pulse radiolysis study[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 3111-3115. doi: 10.1039/a901735f