[1] |
LUO Z F, CHEN H Y, WU S C, et al. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads[J]. Chemosphere, 2019, 237: 124493. doi: 10.1016/j.chemosphere.2019.124493
|
[2] |
ZHANG L, MI J L, HU G N, et al. Facile fabrication of a high-efficient and biocompatibility biocatalyst for bisphenol A removal[J]. International Journal of Biological Macromolecules, 2020, 150: 948-954. doi: 10.1016/j.ijbiomac.2019.11.007
|
[3] |
BESHARATI VINEH M, SABOURY A A, POOSTCHI A A, et al. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration[J]. International Journal of Biological Macromolecules, 2018, 106: 1314-1322. doi: 10.1016/j.ijbiomac.2017.08.133
|
[4] |
PYLYPCHUK I V, DANIEL G, KESSLER V G, et al. Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol-gel encapsulated horseradish peroxidase and lignin peroxidase composites[J]. Nanomaterials (Basel), 2020, 10(2): 282-301.
|
[5] |
XU W Q, JIAO L, YAN H Y, et al. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22096-22101.
|
[6] |
SHIH Y H, LO S H, YANG N S, et al. Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis[J]. ChemPlusChem, 2012, 77(11): 982-986. doi: 10.1002/cplu.201200186
|
[7] |
DOHERTY C M, GRENCI G, RICCO R, et al. Combining UV lithography and an imprinting technique for patterning metal-organic frameworks[J]. Advanced Materials, 2013, 25(34): 4701-4705. doi: 10.1002/adma.201301383
|
[8] |
LAURIER K G, VERMOORTELE F, AMELOOT R, et al. Iron(III)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of American Chemical Society, 2013, 135(39): 14488-14491. doi: 10.1021/ja405086e
|
[9] |
YI X R, HE X B, YIN F X, et al. NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high faradaic efficiency under ambient conditions in neutral electrolyte[J]. Journal of Materials Science, 2020, 55(26): 12041-12052. doi: 10.1007/s10853-020-04777-2
|
[10] |
WANG S, FANG H, WEN Y K, et al. Applications of HRP-immobilized catalytic beads to the removal of 2, 4-dichlorophenol from wastewater[J]. RSC Advances, 2015, 5(71): 57286-57292. doi: 10.1039/C5RA08688D
|
[11] |
CHANG Q, TANG H Q. Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol[J]. Molecules, 2014, 19(10): 15768-15782. doi: 10.3390/molecules191015768
|
[12] |
LEI Z D, XUE Y C, CHEN W Q, et al. The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B(Fe) and the photocatalytic activities[J]. Small, 2018, 14(35): 1802045. doi: 10.1002/smll.201802045
|
[13] |
VU T A, LE G H, VU H T, et al. Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution[J]. Materials Research Express, 2017, 4(3): 035038. doi: 10.1088/2053-1591/aa6079
|
[14] |
LIN J W, HU Y Y, WANG L X, et al. M88/PS/Vis system for degradation of bisphenol A: Environmental factors, degradation pathways, and toxicity evaluation[J]. Chemical Engineering Journal, 2020, 382: 122931. doi: 10.1016/j.cej.2019.122931
|
[15] |
SAMUI A, SAHU S K. One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst[J]. New Journal of Chemistry, 2018, 42(6): 4192-4200. doi: 10.1039/C7NJ03619A
|
[16] |
JIA Y T, CHEN Y C, LUO J, et al. Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109670. doi: 10.1016/j.ecoenv.2019.109670
|
[17] |
ZHANG R Z, WANG L, HAN J, et al. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A[J]. Journal of Hazardous Materials, 2020, 383: 121130. doi: 10.1016/j.jhazmat.2019.121130
|
[18] |
WU E H, LI Y X, HUANG Q, et al. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal[J]. Chemosphere, 2019, 233: 327-335. doi: 10.1016/j.chemosphere.2019.05.150
|
[19] |
DALAL S, GUPTA M N. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering[J]. Chemosphere, 2007, 67(4): 741-747. doi: 10.1016/j.chemosphere.2006.10.043
|
[20] |
CHENG J, YU S M, ZUO P. Horseradish peroxidase immobilized on aluminium-pillared inter-layered clay for the catalytic oxidation of phenolic wastewater[J]. Water Research, 2006, 40(2): 283-290. doi: 10.1016/j.watres.2005.11.017
|
[21] |
ZDARTA J, ANTECKA K, FRANKOWSKI R, et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds[J]. Science of the Total Environment, 2018, 615: 784-795. doi: 10.1016/j.scitotenv.2017.09.213
|
[22] |
LIN J H, LIU Y J, CHEN S, et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal[J]. International Journal of Biological Macromolecules, 2016, 84: 189-199. doi: 10.1016/j.ijbiomac.2015.12.013
|
[23] |
XU R, CHI C L, LI F T, et al. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A[J]. Bioresource Technology, 2013, 149: 111-116. doi: 10.1016/j.biortech.2013.09.030
|
[24] |
HOU J W, DONG G X, YE Y, et al. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane[J]. Journal of Membrane Science, 2014, 469: 19-30. doi: 10.1016/j.memsci.2014.06.027
|
[25] |
ESCALONA I, DE GROOTH J, FONT J, et al. Removal of BPA by enzyme polymerization using NF membranes[J]. Journal of Membrane Science, 2014, 468: 192-201. doi: 10.1016/j.memsci.2014.06.011
|
[26] |
HOU J W, DONG G X, LUU B, et al. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol A[J]. Bioresource Technology, 2014, 169: 475-483. doi: 10.1016/j.biortech.2014.07.031
|
[27] |
XU J, TANG T T, ZHANG K, et al. Electroenzymatic catalyzed oxidation of bisphenol A using HRP immobilized on magnetic silk fibroin nanoparticles[J]. Process Biochemistry, 2011, 46(5): 1160-1165. doi: 10.1016/j.procbio.2011.02.004
|
[28] |
ZHANG H B, WU J C, HAN J, et al. Photocatalyst/enzyme heterojunction fabricated for high-efficiency photoenzyme synergic catalytic degrading bisphenol A in water[J]. Chemical Engineering Journal, 2020, 385: 123764. doi: 10.1016/j.cej.2019.123764
|
[29] |
CAO W, YUAN Y H, YANG C, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chemical Engineering Journal, 2020, 391: 123608. doi: 10.1016/j.cej.2019.123608
|
[30] |
BILAL M, BARCELO D, IQBAL H M N. Persistence, ecological risks, and oxidoreductases-assisted biocatalytic removal of triclosan from the aquatic environment[J]. Science of the Total Environment, 2020, 735: 139194. doi: 10.1016/j.scitotenv.2020.139194
|
[31] |
VINEH M B, SABOURY A A, POOSTCHI A A, et al. Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite[J]. International Journal of Biological Macromolecules, 2020, 164: 4403-4414. doi: 10.1016/j.ijbiomac.2020.09.045
|
[32] |
CHANG Q, HUANG J, DING Y B, et al. Catalytic oxidation of phenol and 2, 4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4[J]. Molecules, 2016, 21(8): 1044. doi: 10.3390/molecules21081044
|
[33] |
ZHAI R, ZHANG B, WAN Y Z, et al. Chitosan-halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal[J]. Chemical Engineering Journal, 2013, 214: 304-309. doi: 10.1016/j.cej.2012.10.073
|
[34] |
HU Y L, DAI L M, LIU D H, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 793-801. doi: 10.1016/j.rser.2018.04.103
|
[35] |
CHANG Q, JIANG G D, TANG H Q, et al. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite[J]. Chinese Journal of Catalysis, 2015, 36(7): 961-968. doi: 10.1016/S1872-2067(15)60856-7
|
[36] |
SHAKERIAN F, ZHAO J, LI S P. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants: A review[J]. Chemosphere, 2020, 239: 124716. doi: 10.1016/j.chemosphere.2019.124716
|