[1] AIE. Key World Energy Statistics[R]. Vienna: Internat. Atomic Energy Agency, 2013.
[2] 李祎邈. MgO-SiO2-H2O体系对铯的吸附性能及固化机理研究[D]. 大连: 大连理工大学, 2019.
[3] NAKANO M, YONG R N. Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant[J]. Engineering Geology, 2013, 155: 78-93.
[4] World Health Organization. Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami based on a preliminary dose estimation Geneva[R]. 2013: 51-69.
[5] 吴虹霁. 西南某地红壤中铯的吸附动力学研究[D]. 成都: 成都理工大学, 2007.
[6] IGARASHI S, NOMURA N, MISHIMA F, et al. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet[J]. Physica C: Superconductivity and Its Applications, 2014, 504: 144-147. doi: 10.1016/j.physc.2014.02.015
[7] 张琼, 陈金融, 张春明, 等. 日本福岛地震后土壤放射性污染修复概述[C]//环境保护部核与辐射安全中心. “二十一世纪初辐射防护论坛”第十次会议: 核与辐射设施退役及放射性废物治理研讨会论文集. 绵阳, 2012: 351-361.
[8] 李丹丹, 郝秀珍, 周东美, 等. 淋洗法修复铬渣污染场地实验研究[J]. 农业环境科学学报, 2011, 30(12): 2451-2457.
[9] 陈靖宇. 淋洗法修复砷污染土壤技术研究进展[J]. 化工管理, 2019(35): 128-129.
[10] 李婷, 蔡芫镔, 方圣琼, 等. FeCl3淋洗修复重金属Pb污染土壤技术研究[J]. 能源与环境, 2020(4): 62-65.
[11] 徐辉. 放射性污染土壤中钚的赋存形态及去污技术研究[D]. 北京: 清华大学, 2017.
[12] JEAN L, BORDAS F, GAUTIER C M, et al. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by datura innoxia[J]. Environmental Pollution, 2008, 153(3): 555-563. doi: 10.1016/j.envpol.2007.09.013
[13] KIM G N, CHIO W K, JUNG C H, et al. Development of a washing system for soil contaminated with radionuclides around TRIGA reactors[J]. Journal of Industrial and Engineering Chemistry, 2007, 13(3): 406-413.
[14] 沈威, 高柏, 章艳红, 等. 化学淋洗法对铀污染土壤的修复效果研究[J]. 有色金属(冶炼部分), 2019(11): 81-86.
[15] FAN Q H, TANAKA M, TANAKA K, et al. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility[J]. Geochimica Et Cosmochimica Acta, 2014, 135: 49-65. doi: 10.1016/j.gca.2014.02.049
[16] SATO K, FUJIMOTO K, DAI W, et al. Molecular mechanism of heavily adhesive Cs: Why radioactive Cs is not decontaminated from soil[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14075-14080. doi: 10.1021/jp403899w
[17] ZHANG H, ZHAO X, WEI J, et al. Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate[J]. Chemical Engineering Journal, 2015, 275: 262-270. doi: 10.1016/j.cej.2015.04.052
[18] KOZAI N, OHNUKI T, ARISAKA M, et al. Chemical states of fallout radioactive Cs in the soils deposited at Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Nuclear Science and Technology, 2012, 49(5): 473-478. doi: 10.1080/00223131.2012.677131
[19] 李世红, 李春江, 于涛, 等. Cs+和Yb3+在方解石、高岭石、蒙脱石、绿泥石和海绿石上的吸附实验研究[J]. 核化学与放射化学, 2002, 24(2): 70-76.
[20] HUANG B, LI Z, HUANG J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research, 2015, 22(15): 11467-11477. doi: 10.1007/s11356-015-4386-x
[21] 罗洁, 张海军, 刘璟, 等. 碱激发粉煤灰对Cs+的吸附行为[J]. 化工环保, 2015, 35(2): 192-198.
[22] 高风翔, 赵永红, 周丹, 等. 生物表面活性剂对原矿中稀土淋洗效果的影响[J]. 有色金属科学与工程, 2018, 9(3): 94-99.
[23] 李婷, 涂安斌, 张越非, 等. 混合铵盐用于风化壳淋积型稀土矿浸取稀土的动力学研究[J]. 化工矿物与加工, 2009, 38(2): 19-24.
[24] 王瑞祥, 谢博毅, 余攀, 等. 离子型稀土矿浸取剂遴选及柱浸工艺优化研究[J]. 稀有金属, 2015, 39(11): 1060-1064.
[25] 林瑞聪, 潘伟斌, 邓翠兰, 等. 单一及复合外源镉(Ⅱ)铬(Ⅲ)污染在红壤中的老化过程[J]. 科学技术与工程, 2019, 19(23): 328-335.
[26] NÚÑEZ C, CRUELLS M, SOTO L G, et al. A general shrinking-particle model for the chemical dissolution of all types of cylinders and discs[J]. Hydrometallurgy, 1994, 36(3): 285-294. doi: 10.1016/0304-386X(94)90027-2
[27] 范波. 离子型稀土矿镁盐浸矿场地淋洗机制及尾矿修复研究[D]. 北京: 北京有色金属研究总院, 2020.
[28] 王东辉, 李广辉, 秦仕强, 等. Cr(VI)污染细粒土壤化学淋洗修复效果与经济成本分析[J]. 生态学杂志, 2020, 39(7): 2309-2315.
[29] 郭探. 铷、铯吸附剂的制备、竞争吸附性能与机理研究[D]. 北京: 中国科学院大学, 2015.
[30] 申珂璇, 林森, 孙仕勇. 蒙脱石基生物纳米复合功能材料及应用研究[J]. 人工晶体学报, 2017, 46(8): 1604-1607.
[31] 智伟迪. 有机改性蒙脱石的循环再生及其对PPCPs的吸附/脱附行为研究[D]. 上海: 上海师范大学, 2020.
[32] RANI R D, SASIDHAR P. Sorption of cesium on clay colloids: Kinetic and thermodynamic studies[J]. Aquatic Geochemistry, 2012, 18(4): 281-296. doi: 10.1007/s10498-012-9163-6
[33] PIRI M, SEPEHR E, RENGRL Z. Citric acid decreased and humic acid increased Zn sorption in soils[J]. Geoderma, 2019, 341: 39-45. doi: 10.1016/j.geoderma.2018.12.027