[1] 生物多样性公约秘书处. 全球生物多样性展望(第四版)[M]. 蒙特利尔, 2014. https://www.cbd.int/.
[2] 杨宏伟. 黄河颗粒物-水体磷和重金属的交换行为研究[M]. 北京: 中国环境科学出版社, 2013.
[3] 范成新, 周易勇, 吴庆龙, 等. 湖泊沉积物界面过程与效应[M]. 北京: 科学出版社, 2013.
[4] 王立鹏. 徽山湖湖东区入湖河流磷污染特征及生态控制技术研究[D]. 济南: 山东建筑大学, 2010.
[5] .

--> 肖兴富, 李文奇, 刘娜, 等. 富营养化水体中蓝藻毒素的危害及其控制[J]. 中国水利水电科学研究院学报, 2005, 3(2): 116 − 123. doi: 10.3969/j.issn.1672-3031.2005.02.008
[6] ZHANG W Q, JIN X, ZHU X L, et al. Phosphorus characteristics, distribution, and relationship with environmental factors in surface sediments of river systems in Eastern China[J]. Environmental Science and Pollution Research, 2016, 23: 19440 − 19449. doi: 10.1007/s11356-016-7079-1
[7] 任万平. 北运河(北京段)底泥磷形态分析及其释放影响因素探讨[D]. 北京: 首都师范大学, 2013.
[8] 刘庆. 南四湖及其入湖河流底泥氮磷释放及其影响因素的研究[D]. 济南: 山东大学, 2009.
[9] 高柳青, 晏维金. 富营养化对三湖水环境影响及防治探讨[J]. 资源科学, 2002, 24(3): 19 − 25. doi: 10.3321/j.issn:1007-7588.2002.03.004
[10] 张修峰, 童春富, 陆健健. 引水对三垟湿地水体总磷影响的生态模型研究[J]. 农业环境科学学报, 2005, 24(5): 924 − 928. doi: 10.3321/j.issn:1672-2043.2005.05.019
[11] 姜建国, 沈韫芬. 截污工程完成后武汉东湖自然净化速率探讨[J]. 长江流域资源与环境, 2001, 10(5): 460 − 464. doi: 10.3969/j.issn.1004-8227.2001.05.012
[12] 秦先燕. 南极无冰区和近海磷的生物地球化学循环[D]. 合肥: 中国科学技术大学, 2013.
[13] 赵海超. 不同形态磷在水-沉水植物-沉积物系统中的迁移转化[D]. 呼和浩特: 内蒙古农业大学, 2006.
[14] MATISOFF G, WATSON S B, GUO J, et al. Sediment and nutrient distribution and resuspension in Lake Winnipeg[J]. Science of the Total Environment, 2017, 575: 173 − 186. doi: 10.1016/j.scitotenv.2016.09.227
[15] SØNDERGAARD M, JENSEN J P, JEPPESEN E. Retention and internal loading of phosphorus in shallow, eutrophic lakes[J]. The Scientific World, 2001, 1: 427 − 442. doi: 10.1100/tsw.2001.72
[16] RYDIN E, BRUNBERG A. Seasonal dynamics of phosphorus in Lake Erken surface sediments[J]. Archiv für Hydrobiologie Special Issues Advanced Limnology, 1998, 51: 157 − 167.
[17] NÜRNBERG G K. Comment: phosphorus budgets and stoichiom-etry during the open-water season in two unmanipulated lakes in the experimental lakes area, Northwestern Ontario[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53: 1469 − 1471. doi: 10.1139/f96-073
[18] CARVALHO L, MABERLY S, MAY L, et al. Risk assessment methodology for determining nutrient impacts in surface freshwater bodies[M]. Bristol: Environment Agency, 2005.
[19] BERELSON W M, HEGGIE D, LONGMORE A, et al. Benthic nutrient recycling in Port Phillip Bay, Australia[J]. Estuarine, Coastal and Shelf Science, 1998, 46(6): 917 − 934. doi: 10.1006/ecss.1998.0328
[20] ÖZKUNDAKCI D, HAMILTON D P, GIBBS M M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion[J]. Hydrobiologia, 2011, 661(1): 5 − 20. doi: 10.1007/s10750-010-0358-9
[21] BOYNTON W R, KEMP W M. Nutrient regeneration and oxygen consumption by sediment along an estuarine salinity gradient[J]. Marine Ecology Progress Series, 1985, 23: 45 − 55. doi: 10.3354/meps023045
[22] MAASSEN S, RÖSKE I, UHLMANN D. Chemical and microbial composition of sediments in reservoirs with different trophic state[J]. International review of hydrobiology, 2003, 88(5): 508 − 518. doi: 10.1002/iroh.200310596
[23] PETTERSON K. Mechanisms for internal loading of phosphorus in lakes[J]. Hydrobiologia, 1998, 373/374: 21 − 25. doi: 10.1023/A:1017011420035
[24] JENSEN H S, ANDERSEN F O. Importance of temperature, nitrate, and pH for phospate release from aerobic sediments of four shallow, eutrophic lakes[J]. Limnology and Oceanography, 1992, 37(3): 577 − 589. doi: 10.4319/lo.1992.37.3.0577
[25] 龚春生, 姚琪, 范成新, 等. 城市浅水型湖泊底泥释磷的通量估算—以南京玄武湖为例[J]. 湖泊科学, 2006, 18(2): 179 − 183. doi: 10.3321/j.issn:1003-5427.2006.02.012
[26] 陈敬安, 张维, 张润宇, 等. 红枫湖底泥污染物空间分布特征[C]//第十三届世界湖泊大会论文集, 北京, 2010.
[27] 秦伯强, 朱广伟, 张路, 等. 大型浅水湖泊沉积物内源营养盐释放模式及其估算方法—以太湖为例[J]. 中国科学, 2005, 35(增2): 33 − 44.
[28] 张丽萍, 袁文权, 张锡辉. 底泥污染物释放动力学研究[J]. 环境工程学报, 2003, 4(2): 22 − 26. doi: 10.3969/j.issn.1673-9108.2003.02.006
[29] 林悦涓. 东湖沉积物及上覆水体氮磷形态分布特征[D]. 武汉: 武汉大学,2005.
[30] 向速林, 周文斌. 鄱阳湖沉积物中磷的赋存形态及分布特征[J]. 湖泊科学, 2010, 22(5): 649 − 654.
[31] 王忍, 李大鹏, 黄勇, 等. 物理和生物组合扰动对底泥微界面过程的影响[J]. 环境科学, 2015, 36(11): 4112 − 4120.
[32] 王书锦, 刘云根, 梁启斌, 等. 罗时江河口湿地沉积物磷的空间分布及污染风险评价[J]. 环境工程学报, 2016, 10(2): 955 − 962. doi: 10.12030/j.cjee.20160269
[33] TROLLE D, ZHU G W, HAMILTON D. The influence of water quality and sediment geochemistry on the horizontal and vertical distribution of phosphorus and nitrogen in sediments of a large, shallow lake[J]. Hydrobiologia, 2009, 627: 31 − 44. doi: 10.1007/s10750-009-9713-0
[34] SØNDERGAARD M, WINDOLF J, JEPPESEN E. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry[J]. Water Research, 1996, 30: 992 − 1102. doi: 10.1016/0043-1354(95)00251-0
[35] DOIG L E, NORTH R L, HUDSON J J, et al. Phosphorus release from sediments in a river-valley reservoir in the northern Great Plains of North America[J]. Hydrobiologia, 2017, 787: 323 − 339. doi: 10.1007/s10750-016-2977-2
[36] JIN X D, HE Y L, KIRUMBA G, et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir[J]. Ecological Engineering, 2013, 55: 62 − 66. doi: 10.1016/j.ecoleng.2013.02.001
[37] THOMPSON P A, WAITE A M, MCMAHON K. Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool[J]. Marine and Freshwater Research, 2003, 54(1): 27 − 37. doi: 10.1071/MF02060
[38] DAUTA A, LAPAQUELLERIE Y, MAILLET N. Role of the dams on the River Lot on two types of pollution: point-sources (cadmium) and non-point sources (phosphorus)[J]. Hydrobiologia, 1999, 410: 325 − 329. doi: 10.1023/A:1003799512666
[39] VO N X Q, DOAN T V, KANG H J. Impoundments increase potential for phosphorus retention and remobilization in an urban stream[J]. Environment Engineering Research, 2014, 19(2): 175 − 184. doi: 10.4491/eer.2014.19.2.175
[40] 周建军, 张曼, 李哲. 长江上游水库改变干流磷通量、效应与修复对策[J]. 湖泊科学, 2018, 30(4): 865 − 880. doi: 10.18307/2018.0401
[41] BRAMHA S N, MOHANTY A K, PADHI R K, et al. Phosphorus speciation in the marine sediment of Kalpakkam coast, southeast coast of India[J]. Environmental Monitoring & Assessment, 2014, 186(10): 6003 − 6015.
[42] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 2015, 36(2): 448 − 456.
[43] SHOJA H, RAHIMI G, FALLAH M, et al. Investigation of phosphorus fractions and isotherm equation on the lake sediments in Ekbatan Dam (Iran)[J]. Environmental Earth Sciences, 2017, 76(6): 235. doi: 10.1007/s12665-017-6548-2
[44] NGUYEN H V, MAEDA M. Phosphorus sorption kinetics and sorption capacity in agricultural drainage ditch sediments in reclaimed land, Kasaoka Bay, Japan[J]. Water Quality Research Journal of Canada, 2016, 51(4): 388 − 398. doi: 10.2166/wqrjc.2016.019
[45] 路丁, 郭沛涌, 沈芳芳, 等. 福建省山美水库入库河道沉积物磷释放风险[J]. 环境化学, 2015, 34(8): 1498 − 1505. doi: 10.7524/j.issn.0254-6108.2015.08.2015012608
[46] 何佳, 陈春瑜, 邓伟明, 等. 滇池水沉积物界面磷形态分布及潜在释放特征[J]. 湖泊科学, 2015, 27(5): 799 − 810. doi: 10.18307/2015.0506
[47] 龚莹, 王宁, 李玉成, 等. 巢湖水体–沉积物磷形态与有效性[J]. 生态与农村环境学报, 2015(3): 359 − 365. doi: 10.11934/j.issn.1673-4831.2015.03.014
[48] 袁和忠, 沈吉, 刘恩峰, 等. 太湖水体及表层沉积物磷空间分布特征及差异性分析[J]. 环境科学, 2010, 31(4): 954 − 960.
[49] 郭晨辉, 刘颖. 光度法对不同水期黄河甘宁蒙段表层沉积物中磷积累程度和交换能力的比较研究[J]. 光谱学与光谱分析, 2019, 39(5): 1586 − 1592.
[50] 秦丽欢, 曾庆慧, 李叙勇, 等. 密云水库沉积物磷形态分布特征[J]. 生态学杂志, 2017, 36(3): 774 − 781.
[51] 姜双城, 林培梅, 林建伟, 等. 厦门湾沉积物中磷的形态特征及环境意义[J]. 热带海洋学报, 2014(3): 72 − 78. doi: 10.3969/j.issn.1009-5470.2014.03.011
[52] 高春梅, 朱珠, 王功芹, 等. 海州湾海洋牧场海域表层沉积物磷的形态与环境意义[J]. 中国环境科学, 2015, 35(11): 3437 − 3444. doi: 10.3969/j.issn.1000-6923.2015.11.031
[53] 何桐, 杨文丰, 谢健, 等. 大亚湾柱状沉积物中C、N、P的分布特征及其环境意义[J]. 海洋环境科学, 2015, 34(4): 524 − 529.
[54] PERYER-FURSDON J, ABELL J M, CLARKE D, et al. Spatial variability in sediment phosphorus characteristics along a hydrological gradient upstream of Lake Rotorua, New Zealand[J]. Environmental Earth Sciences, 2015, 73(4): 1573 − 1585. doi: 10.1007/s12665-014-3508-y
[55] RENJITH K R, CHANDRAMOHANAKUMAR N, JOSEPH M M. Fractionation and bioavailability of phosphorus in a tropical estuary, Southwest India[J]. Environmental Monitoring & Assessment, 2011, 174(1−4): 299 − 312.
[56] BARIK S K, BRAMHA S N, MOHANTY A K, et al. Sequential extraction of different forms of phosphorus in the surface sediments of Chilika Lake[J]. Arabian Journal of Geosciences, 2016, 9(2): 1 − 12.
[57] SHILLA D A, ASAEDA T, KIAN S, et al. Phosphorus concentration in sediment, water and tissues of three submerged macrophytes of Myall Lake, Australia[J]. Wetlands Ecology & Management, 2006, 14(6): 549 − 558.
[58] ONIANWA P C, OPUTU O U, OLADIRAN O E, et al. Distribution and speciation of phosphorus in sediments of rivers in Ibadan, South-Western Nigeria[J]. Chemical Speciation & Bioavailability, 2013, 25(1): 24 − 33.
[59] BARRAL M T, DEVESA-REY R, RUIZ B, et al. Evaluation of Phosphorus Species in the Bed Sediments of an Atlantic Basin: Bioavailability and Relation with Surface Active Components of the Sediment[J]. Journal of Soil Contamination, 2012, 21(1): 1 − 18. doi: 10.1080/15320383.2012.636771
[60] RANGEL C M A, NETO J A B, LIMA L G, et al. Speciation of Phosphorus in an Estuarine System Inside Guanabara Bay, RJ-SE Brazil[J]. Journal of Coastal Research, 2005, 65(3): 1194 − 1199.
[61] EL-SAID G F, KHALIL M K, DRAZ S E O. Anomalous distribution of fluoride and phosphorus forms in surface sediments along eastern Egyptian Mediterranean Sea coast[J]. Environmental Science & Pollution Research, 2016, 23(14): 14240 − 14253.
[62] JUNIOR L C C, MACHADO E D C, BRANDINI N, et al. Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay estuary, SE Brazil[J]. Environmental Earth Sciences, 2014, 72(2): 373 − 386. doi: 10.1007/s12665-013-2958-y
[63] SAMADI-MAYBODI A, TAHERI S H, KHODADOUST S, et al. Study on different forms and phosphorus distribution in the coastal surface sediments of Southern Caspian Sea by using UV-Vis spectrophotometery[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 113(9): 67 − 71.
[64] 徐轶群, 熊慧欣, 赵秀兰. 底泥磷的吸附与释放研究进展[J]. 重庆环境科学, 2003, 25(11): 147 − 149.
[65] 马永星, 臧家业, 车宏, 等. 黄河干流营养盐分布与变化趋势[J]. 海洋与湖沼, 2015, 46(1): 140 − 147.