[1] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171. doi: 10.1016/j.jclepro.2016.03.172
[2] 邢宁, 吴平霄, 李媛媛, 等. 大宝山尾矿重金属形态及其潜在迁移能力分析[J]. 环境工程学报, 2011, 5(6): 1370-1374.
[3] YE M Y, YAN P F, SUN S Y, et al. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process[J]. Chemosphere, 2017, 168: 1115-1125. doi: 10.1016/j.chemosphere.2016.10.095
[4] SIRKECI A A, GUL A, BULUT G, et al. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator[J]. Mineral Processing and Extractive Metallurgy Review, 2006, 27(2): 131-141. doi: 10.1080/08827500600563343
[5] WANG G W, NING X A, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001
[6] LI R F, ZHOU Y, LI C W, et al. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity[J]. Construction and Building Materials, 2019, 213: 43-50. doi: 10.1016/j.conbuildmat.2019.04.040
[7] HU P, ZHANG Y H, ZHOU Y R, et al. Preparation and effectiveness of slow-release silicon fertilizer by sintering with iron ore tailings[J]. Environmental Progress & Sustainable Energy, 2018, 37(3): 1011-1019.
[8] 苏静. 尾矿及其建筑材料的重金属迁移固化的研究[D]. 北京: 北京交通大学, 2017.
[9] 韦琳, 吕晓蕾, 刘阳生, 等. CaCl2高温热处理垃圾焚烧飞灰中重金属的挥发特性[J]. 环境工程学报, 2013, 7(11): 4533-4539.
[10] LI H Y, MA A Y, SRINIVASAKANNAN C, et al. Investigation on the recovery of gold and silver from cyanide tailings using chlorination roasting process[J]. Journal of Alloys and Compounds, 2018, 763: 241-249. doi: 10.1016/j.jallcom.2018.05.298
[11] YU J, SUN L S, MA C, et al. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl2·6H2O[J]. Waste Management, 2016, 49: 124-130. doi: 10.1016/j.wasman.2015.12.015
[12] FRAISSLER G, JÖLLER M, MATTENBERGER H, et al. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 152-164. doi: 10.1016/j.cep.2008.03.009
[13] MATSUDA H, OZAWA S, NARUSE K, et al. Kinetics of HCl emission from inorganic chlorides in simulated municipal wastes incineration conditions[J]. Chemical Engineering Science, 2005, 60(2): 545-552. doi: 10.1016/j.ces.2004.07.131
[14] NOWAK B, WEGERER H, ASCHENBRENNER P, et al. Sewage sludge ash to phosphate fertilizer by chlorination and thermal treatment: Residence time requirements for heavy metal removal[J]. Environmental Technology, 2012, 33(19/20/21): 2375-2381.
[15] 中华人民共和国环境保护部. 土壤和沉积物金属元素总量的消解微波消解: HJ 832-2017[S]. 北京: 中国环境科学出版社, 2018.
[16] 中华人民共和国国家环境保护总局. 固体废物毒性浸出方法硫酸硝酸法: HJ/T 299-2007[S]. 北京: 中国环境科学出版社, 2008.
[17] OROSCO P, RUIZ M D C, GONZáLEZ J. Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism[J]. Powder Technology, 2014, 267: 111-118. doi: 10.1016/j.powtec.2014.07.009
[18] ZHAI X J, FU Y, ZHANG X, et al. Intensification of sulphation and pressure acid leaching of nickel laterite by microwave radiation[J]. Hydrometallurgy, 2009, 99(3/4): 189-193. doi: 10.1016/j.hydromet.2009.08.006
[19] WANG S J, HE P J, LU W T, et al. Comparison of Pb, Cd, Zn, and Cu chlorination during pyrolysis and incineration[J]. Fuel, 2017, 194: 257-265. doi: 10.1016/j.fuel.2017.01.035
[20] 周英男, 闫大海, 李丽, 等. 烧结机共处置危险废物过程中重金属Pb、Zn的挥发特性[J]. 环境科学学报, 2015, 35(11): 3769-3774.
[21] 蔡海立, 宁寻安, 白晓燕, 等. CaCl2氯化焙烧回收铁尾矿中的重金属Cu、Pb、Zn[J]. 环境工程学报, 2019, 13(9): 2217-2224. doi: 10.12030/j.cjee.201812210
[22] NOWAK B, PESSL A, ASCHENBRENNER P, et al. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 323-331. doi: 10.1016/j.jhazmat.2010.03.008
[23] ADAM C, PEPLINSKI B, MICHAELIS M, et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery[J]. Waste Management, 2009, 29(3): 1122-1128. doi: 10.1016/j.wasman.2008.09.011
[24] NOWAK B, PERUTKA L, ASCHENBRENNER P, et al. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash[J]. Waste Management, 2011, 31(6): 1285-1291. doi: 10.1016/j.wasman.2011.01.029
[25] NOWAK B, FRíAS ROCHA S, ASCHENBRENNER P, et al. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J]. Chemical Engineering Journal, 2012, 179: 178-185. doi: 10.1016/j.cej.2011.10.077
[26] KURASHIMA K, MATSUDA K, KUMAGAI S, et al. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash[J]. Waste Management, 2019, 87: 204-217. doi: 10.1016/j.wasman.2019.02.007
[27] 任松彦. 城市生活垃圾在焚烧过程中的重金属迁移特性研究[D]. 广州: 华南理工大学, 2013.
[28] FRAISSLER G, JÖLLER M, BRUNNER T, et al. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 380-388. doi: 10.1016/j.cep.2008.05.003
[29] KANARI N, ALLAIN E, JOUSSEMET R, et al. An overview study of chlorination reactions applied to the primary extraction and recycling of metals and to the synthesis of new reagents[J]. Thermochimica Acta, 2009, 495(1/2): 42-50. doi: 10.1016/j.tca.2009.05.013
[30] 中华人民共和国国家环境保护总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2008.