[1] |
WU H, FAN J, ZHANG J, et al. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics[J]. Environmental Pollution, 2018, 233: 933-942. doi: 10.1016/j.envpol.2017.09.048
|
[2] |
DU L, TRINH X T, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2018, 249: 644-651. doi: 10.1016/j.biortech.2017.10.074
|
[3] |
HAN Z F, DONG J, SHEN Z Q, et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217: 364-373. doi: 10.1016/j.chemosphere.2018.11.036
|
[4] |
GAGNON V, CHAZARENC F, COMEAU Y, et al. Influence of macrophyte species on microbial density and activity in constructed wetlands[J]. Water Science and Technology, 2007, 56: 249-254. doi: 10.2166/wst.2007.510
|
[5] |
ZHUANG L, YANG T, ZHANG J, et al. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review[J]. Bioresource Technology, 2019, 293: 122086. doi: 10.1016/j.biortech.2019.122086
|
[6] |
SAEED T, SUN G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011
|
[7] |
PHILIPPOT L. Denitrifying genes in bacterial and Archaeal genomes[J]. Biochimica et Biophysica Acta: Biomembranes, 2002, 1577: 355-376. doi: 10.1016/S0167-4781(02)00420-7
|
[8] |
VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380: 48-65. doi: 10.1016/j.scitotenv.2006.09.014
|
[9] |
LI Y, ZHU G, NG W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468: 908-932.
|
[10] |
ZHI W, JI G. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035
|
[11] |
LAI X S, ZHAO Y Q, PAN F X, et al. Enhanced optimal removal of nitrogen and organics from intermittently aerated vertical flow constructed wetlands: Relative COD/N ratios and microbial responses[J]. Chemosphere, 2020, 244: 125556. doi: 10.1016/j.chemosphere.2019.125556
|
[12] |
CHEN D Y, GU X S, ZHU W Y, et al. Denitrification- and anammox-dominant simultaneous nitrification, anammox and denitrification (SNAD) process in subsurface flow constructed wetlands[J]. Bioresource Technology, 2019, 271: 298-305. doi: 10.1016/j.biortech.2018.09.123
|
[13] |
HALLIN S, HELLMAN M, CHOUDHURY M I, et al. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands[J]. Water Research, 2015, 85: 377-383. doi: 10.1016/j.watres.2015.08.060
|
[14] |
PAN J, QI S, SUN Y, et al. Nitrogen removal and nitrogen functional gene abundances in three subsurface wastewater infiltration systems under different modes of aeration and influent C/N ratios[J]. Bioresource Technology, 2017, 241: 1162-1167. doi: 10.1016/j.biortech.2017.05.112
|
[15] |
LYU W, HUANG L, XIAO G, et al. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands[J]. Bioresource Technology, 2017, 245: 171-181. doi: 10.1016/j.biortech.2017.08.056
|
[16] |
WU J, ZHANG J, JIA W, et al. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J]. Bioresource Technology, 2009, 100: 2910-2917. doi: 10.1016/j.biortech.2009.01.056
|
[17] |
ZHAO Y, LIU B, ZHANG W, et al. Performance of pilot-scale vertical flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage[J]. Bioresource Technology, 2010, 101: 1693-1700. doi: 10.1016/j.biortech.2009.10.002
|
[18] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[19] |
TSUSHIMA I, KINDAICHI T, OKABE S. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR[J]. Water Research, 2007, 41(4): 785-794. doi: 10.1016/j.watres.2006.11.024
|
[20] |
JI G, ZHI W, TAN Y. Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems[J]. Ecological Engineering, 2012, 44: 269-277. doi: 10.1016/j.ecoleng.2012.04.007
|
[21] |
YAN T F, FIELDS M W, WU L Y, et al. Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate-and uranium-contaminated groundwater[J]. Environmental Microbiology, 2003, 5(1): 13-24. doi: 10.1046/j.1462-2920.2003.00393.x
|
[22] |
THROBACK I N, ENWALL K, JARVIS A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. doi: 10.1016/j.femsec.2004.04.011
|
[23] |
SCALA D J and KERKHOF L J. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments[J]. FEMS Microbiology Letters, 1998, 162(1): 61-68. doi: 10.1111/j.1574-6968.1998.tb12979.x
|
[24] |
CHEN X, ZHU H, YAN B, et al. Optimal influent COD/N ratio for obtaining low GHG emissions and high pollutant removal efficiency in constructed wetlands[J]. Journal of Cleaner Production, 2020, 267: 122003. doi: 10.1016/j.jclepro.2020.122003
|
[25] |
COSKUN D, BRITTO D T, SHI W, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017, 22: 661-673. doi: 10.1016/j.tplants.2017.05.004
|
[26] |
ZHAI X, PIWPUAN N, ARIAS C A, et al. Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems?[J]. Ecological Engineering, 2013, 61: 555-563. doi: 10.1016/j.ecoleng.2013.02.014
|
[27] |
FRANK D A and GROFFMAN P M. Plant rhizospheric N processes: What we don’t know and why we should care[J]. Ecology, 2009, 90: 1512-1519. doi: 10.1890/08-0789.1
|
[28] |
WANG Q, XIE H J, NGO H H, et al. Microbial abundance and community in subsurface flow constructed wetland microcosms: Role of plant presence[J]. Environmental Science and Pollution Research, 2016, 23(5): 4036-4045. doi: 10.1007/s11356-015-4286-0
|
[29] |
LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater[J]. Ecological Engineering, 2016, 94: 564-573. doi: 10.1016/j.ecoleng.2016.06.106
|
[30] |
ZHU H, YAN B, XU Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018
|
[31] |
BRENZINGER K, DÖRSCH P, BRAKER G. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil[J]. Frontier in Microbiology, 2015, 6: 961.
|
[32] |
LI H F, LIU F, LUO P, et al. Stimulation of optimized influent C∶N ratios on nitrogen removal in surface flow constructed wetlands: Performance and microbial mechanisms[J]. Science of the Total Environment, 2019, 694: 133575. doi: 10.1016/j.scitotenv.2019.07.381
|
[33] |
GAO L, ZHOU W L, HUANG J C, et al. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent[J]. Bioresource Technology, 2017, 234: 243-252. doi: 10.1016/j.biortech.2017.03.036
|
[34] |
CHEN C, XU X J, XIE P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301. doi: 10.1016/j.chemosphere.2016.11.159
|