[1] 周晨, 潘玉婷, 刘敏, 等. 反硝化过程中氧化亚氮释放机理研究进展[J]. 化工进展, 2017, 36(8): 3074-3084.
[2] 王丝可, 于恒, 左剑恶. 温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响[J]. 环境科学, 2020, 41(11): 5082-5088.
[3] 王莎. 亚硝酸盐反硝化过程中NO和N2O积累特征及其机理研究[D]. 西安: 长安大学, 2019.
[4] STROKAL M, KROEZE C. Nitrous oxide (N2O) emissions from human waste in 1970-2050[J]. Current Opinion in Environmental Sustainability, 2014, 9-10: 108-121. doi: 10.1016/j.cosust.2014.09.008
[5] SCHERSON Y D, WELLS G F, WOO S G, et al. Nitrogen removal with energy recovery through N2O decomposition[J]. Energy & Environmental Science, 2013, 6(1): 241-248.
[6] SCHERSON Y D, WOO S G, CRIDDLE C S. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery[J]. Environmental Science & Technology, 2014, 48(10): 5612-5619.
[7] 冯鑫, 赵剑强, 代伟, 等. 亚硝酸盐反硝化聚磷过程中NO和N2O的累积特征[J]. 环境工程, 2019, 37(12): 1-5.
[8] 胡国山, 张建美, 蔡惠军. 碳源, C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77. doi: 10.3969/j.issn.1671-1815.2016.14.015
[9] 王丽丽, 赵林, 谭欣, 等. 不同碳源及其碳氮比对反硝化过程的影响[J]. 环境保护科学, 2004, 30(8): 15-18.
[10] 章旻. 污水反硝化脱氮的固态有机碳源选择实验研究[D]. 武汉: 武汉理工大学, 2009.
[11] 周梦娟, 缪恒锋, 陆震明, 等. 碳源对反硝化细菌的反硝化速率和群落结构的影响[J]. 环境科学研究, 2018, 31(12): 2047-2054.
[12] 李南锟, 杜帅, 刘莉, 等. 葡萄糖对硫自养反硝化性能及微生物群落的影响[J]. 环境科学与技术, 2019, 42(12): 14-19.
[13] 王淑莹, 委燕, 马斌, 等. 控制污水生物处理过程中N2O的释放[J]. 环境科学与技术, 2014, 37(7): 78-84.
[14] WU G X, ZHAI X F, JIANG C A, et al. Effect of ammonium on nitrous oxide emission during denitrification with different electron donors[J]. Journal of Environmental Sciences, 2013, 25(6): 1131-1138.
[15] 付昆明, 姜姗, 苏雪莹, 等. 碳氮比对颗粒污泥CANON反应器脱氮性能和N2O释放的冲击影响[J]. 环境科学, 2018, 39(11): 263-269.
[16] 国家环境保护局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[17] 胡广宁. 反硝化脱氮过程中亚硝酸盐积累影响因素的研究[D]. 济南: 山东建筑大学, 2020.
[18] CHERCHI C, ONNIS-HAYDEN A, EL-SHAWABKEH I, et al. Implication of using different carbon sources for denitrification in wastewater treatments[J]. Water Environment Research, 2009, 81(8): 788-799. doi: 10.2175/106143009X12465435982610
[19] 解英丽, 耿大伟, 吕楠. 亚硝酸盐与硝酸盐反硝化对比试验研究[J]. 给水排水, 2009, 35(S2): 213-215.
[20] CERVANTES F J, ROSA D A D L, GÓMEZ J. Nitrogen removal from wastewaters at low C/N ratios with ammonium and acetate as electron donors[J]. Bioresource Technology, 2001, 79(2): 165-170. doi: 10.1016/S0960-8524(01)00046-3
[21] 吴光学, 李波, 王火青, 等. 碳源对反硝化过程中一氧化二氮释放的影响[J]. 环境科学与技术, 2015, 38(9): 36-41.
[22] 翟晓峰, 蒋成爱, 吴光学, 等. 以甲醇为碳源生物反硝化过程释放一氧化二氮的试验研究[J]. 环境科学, 2013, 34(4): 1421-1427.
[23] GE S, PENG Y, WANG S, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/ $ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$-N[J]. Bioresource Technology, 2012, 114: 137-143. doi: 10.1016/j.biortech.2012.03.016
[24] MA J, YANG Q, WANG S, et al. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 518-523.
[25] DING X, ZHAO J, HU B, et al. Mathematical modeling of nitrous oxide (N2O) production in anaerobic/anoxic/oxic processes: Improvements to published N2O models[J]. Chemical Engineering Journal, 2017, 325: 386-395. doi: 10.1016/j.cej.2017.05.082
[26] 马娟, 王丽, 彭永臻, 等. FNA的抑制作用及反硝化过程的交叉影响[J]. 环境科学, 2010, 31(4): 1030-1035.
[27] 张兴兴, 赵日祥, 赵剑强. 碳氮比对亚硝酸盐反硝化过程NO与N2O积累的影响研究[J]. 给水排水, 2020, 56(4): 86-91.
[28] GABARRO J G P R M. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration[J]. Bioresource Technology, 2014, 163: 92-99. doi: 10.1016/j.biortech.2014.04.019
[29] WANG Q, JIANG G, YE L, et al. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor[J]. Water Research, 2014, 62(1): 202-210.
[30] ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by adenitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42(22): 8260-8265.
[31] GLASS C, SILVERSTEIN J A, OH J. Inhibition of denitrification in activated sludge by nitrite[J]. Water Environment Research, 1997, 69(6): 1086-1093. doi: 10.2175/106143097X125803
[32] 王莎莎, 彭永臻, 巩有奎, 等. 不同电子受体低氧条件下生物反硝化过程中氧化亚氮产量[J]. 水处理技术, 2011, 37(8): 58-60.
[33] ALINSAFI A, ADOUANI N, BÉLINE F, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry, 2008, 43(6): 683-689. doi: 10.1016/j.procbio.2008.02.008
[34] PAN Y, NI B J, BOND P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013, 47(10): 3273-3281. doi: 10.1016/j.watres.2013.02.054
[35] ZHAO W, WANG Y, LIU S, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 215-216: 252-260. doi: 10.1016/j.cej.2012.10.084
[36] KISHIDA N, KIM J H, KIMOCHI Y, et al. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process[J]. Water Science & Technology, 2004, 49(5/6): 359-365.
[37] 魏百惠. 反硝化过程中N2O积累特性及影响因素探究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[38] 刘国华, 庞毓敏, 范强, 等. 不同碳源条件下污水生物脱氮过程中N2O的释放规律[J]. 环境保护科学, 2016, 42(1): 90-94.
[39] 徐亚同. 不同碳源对生物反硝化的影响[J]. 给水排水技术动态, 1994, 15(2): 28-31.
[40] GLASS C, SILVERSTEIN J A. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839. doi: 10.1016/S0043-1354(97)00260-1
[41] LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(1): 237-254.