[1] BIGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica Et Cosmochimica Acta, 1990, 54(10): 2743-2758. doi: 10.1016/0016-7037(90)90009-A
[2] ZHANG Z, BI X, LI X T, et al. Schwertmannite: Occurrence, properties, synthesis and application in environmental remediation[J]. RSC Advances, 2018, 8(59): 33583-33599. doi: 10.1039/C8RA06025H
[3] 李旭伟, 贺静, 张健, 等. 透析对施氏矿物微观结构及其砷吸附能力的影响[J]. 环境科学学报, 2020, 40(2): 546-553.
[4] BIGHAM J M, CARLSON L, MURAD E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities[J]. Mineralogical Magazine, 1994, 58: 641-648.
[5] LIU F W, ZHOU J, ZHOU L X, et al. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment[J]. Journal of Hazardous Materials, 2015, 299: 404-411. doi: 10.1016/j.jhazmat.2015.06.035
[6] WU Y, GUO J, JIANG D J, et al. Heterogeneous photocatalytic degradation of methyl orange in schwertmannite/oxalate suspension under UV irradiation[J]. Environmental Science and Pollution Research, 2012, 19: 2313-2320. doi: 10.1007/s11356-012-0740-4
[7] 汪快兵, 方迪, 徐峙晖, 等. 生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究[J]. 环境科学, 2015, 36(3): 995-999.
[8] 薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849.
[9] RAN J Y, YU B. Rapid ferric transformation by reductive sissolution of schwertmannite for highly efficient catalytic degradation of Rhodamine B[J]. Materials, 2018, 11(7): 1165-1178. doi: 10.3390/ma11071165
[10] YAN S, ZHENG G Y, MENG X Q, et al. Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions[J]. Separation & Purification Technology, 2017, 185: 83-93.
[11] WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262(15): 412-419.
[12] LIAO Y H, ZHOU L X, LIANG J R, et al. Biosynthesis of schwertmannite by Acidithiobacillus Ferrooxidans cell suspensions under different pH condition[J]. Materials Science and Engineering C, 2009, 29: 211-215.
[13] BARHAM R J. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate[J]. Journal of Materials Research, 1997, 12(10): 2751-2758. doi: 10.1557/JMR.1997.0366
[14] 宋永伟, 王鹤茹, 梁剑茹, 等. 嗜酸性氧化亚铁硫杆菌介导的次生铁矿物形成的影响因素分析[J]. 环境科学学报, 2018, 38(3): 1024-1030.
[15] JONES F S, BIGHAM J M, GRAMP J P, et al. Synthesis and properties of ternary(K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions[J]. Materials Science and Engineering C, 2014, 44: 391-399. doi: 10.1016/j.msec.2014.08.043
[16] BAI S Y, XU Z H, WANG M, et al. Both initial concentrations of Fe(II) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J]. Materials Science and Engineering C, 2012, 32(8): 2323-2329. doi: 10.1016/j.msec.2012.07.003
[17] 刘奋武, 高诗颖, 崔春红, 等. Ca(Ⅱ)对酸性硫酸盐环境中次生铁矿物合成的影响[J]. 中国环境科学, 2015, 35(4): 1142-1148.
[18] LIU F W, ZHOU J, JIN T J, et al. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans[J]. Water Science & Technology, 2016, 73(6): 1442-1453.
[19] ZHANG L, MANTHIRAM A. Ambient temperature synthsis of fine metal particles in montmorillonite clat and their magnetic properties[J]. Nanostructured Materials, 1996, 7(4): 437-451. doi: 10.1016/0965-9773(96)00015-3
[20] CAO Y Q, DAI Z, CHEN B H, et al. Sodium borohydride reduction of ketones, aldehydes and imines using PEG400 as catalyst without solvent[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 834-836.
[21] SUN Y P, LI X Q, CAO J S, et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120: 47-56. doi: 10.1016/j.cis.2006.03.001
[22] LEIVISKA T, ZHANG R, TANSKANEN J, et al. Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal[J]. Journal of Hazardous Materials, 2019, 374: 372-381. doi: 10.1016/j.jhazmat.2019.04.056
[23] QIAO X X, LIU L L, SHI J, et al. Heating changes bio-schwertmannite microstructure and arsenic(III) removal efficiency[J]. Minerals, 2017, 7(1): 9.
[24] DONG Y, LIU F W, QIAO X X, et al. Effects of acid mine drainage on calcareous soil characteristics and Lolium perenne L. germination[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2742. doi: 10.3390/ijerph15122742
[25] ACERO P, AYORA C, TORRENTO C, et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4130-4139. doi: 10.1016/j.gca.2006.06.1367
[26] PAIKARAY S, SCHRODER C, PEIFFER S. Schwertmannite stability in anoxic Fe(II)-rich aqueous solution[J]. Geochimica et Cosmochimica Acta, 2017, 217: 292-305. doi: 10.1016/j.gca.2017.08.026
[27] 宋永伟, 陈婷, 王鹤茹, 等. 阴离子对Acidithiobacillus ferrooxidans氧化活性及次生铁矿物形成影响[J]. 中国环境科学, 2018, 38(2): 574-580.
[28] JONSSON J, PERSSON P, SJOBERG S, et al. Schwertmannite precipitated from acid mine drainage: Phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 2005, 20: 179-191. doi: 10.1016/j.apgeochem.2004.04.008
[29] WANG H, BIGHAM J M, TUOVINEN O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials Science and Engineering C, 2006, 26(4): 588-592. doi: 10.1016/j.msec.2005.04.009
[30] ZHU J Y, GAN M, ZHANG D, et al. The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability[J]. Materials Science and Engineering C, 2013, 33: 2679-2685. doi: 10.1016/j.msec.2013.02.026