[1] |
TIAN R X, LIN Q, LI D W, et al. Atmospheric transport of nutrients during a harmful algal bloom event[J]. Regional Studies in Marine Science, 2020, 34: 101007.
|
[2] |
CAPUZZO E, STEPHENS D, SILVA T, et al. Decrease in water clarity of the southern and central North Sea during the 20th century[J]. Global Change Biology, 2015, 21(6): 2206-2214. doi: 10.1111/gcb.12854
|
[3] |
MITRA A, FLYNN K J. Promotion of harmful algal blooms by zooplankton predatory activity[J]. Biology Letters, 2006, 2(2): 194-197. doi: 10.1098/rsbl.2006.0447
|
[4] |
MU D Y, RUAN R, ADDY M, et al. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production[J]. Bioresource Technology, 2017, 230: 33-42. doi: 10.1016/j.biortech.2016.12.108
|
[5] |
SUN R, SUN P F, ZHANG J H, et al. Microorganisms-based methods for harmful algal blooms control: A review[J]. Bioresource Technology, 2018, 248(Pt B): 12-20.
|
[6] |
李颖, 施择, 张榆霞, 等. 关于用藻密度对蓝藻水华程度进行分级评价的方法和运用[J]. 环境与可持续发展, 2014, 39(2): 67-68. doi: 10.3969/j.issn.1673-288X.2014.02.020
|
[7] |
杨磊, 张高科, 汤丹丹, 等. 壳聚糖改性红壤去除铜绿微囊藻[J]. 环境工程学报, 2015, 9(8): 3745-3750. doi: 10.12030/j.cjee.20150825
|
[8] |
MAO X F, WEI X Y, YUAN D H, et al. An ecological-network-analysis based perspective on the biological control of algal blooms in Ulansuhai Lake, China[J]. Ecological Modelling, 2018, 386: 11-19. doi: 10.1016/j.ecolmodel.2018.07.020
|
[9] |
ALKARAWI M A S, CALDWELL G S, LEE J G M. Continuous harvesting of microalgae biomass using foam flotation[J]. Algal Research, 2018, 36: 125-138. doi: 10.1016/j.algal.2018.10.018
|
[10] |
ZHANG M, WANG Y F, WANG Y Q, et al. Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles[J]. Water Research, 2019, 161: 473-485. doi: 10.1016/j.watres.2019.06.035
|
[11] |
TEIXEIRA M R, ROSA M J A. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa Part I: The key operating conditions[J]. Separation and Purification Technology, 2006, 52: 84-94. doi: 10.1016/j.seppur.2006.03.017
|
[12] |
JAMESON G J. Hydrophobicity and floc density in induced-air flotation for water treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151(1): 269-281.
|
[13] |
CASSELL E A, KAUFMAN K M, MATUEVIC E. The effects of bubble size on microflotation[J]. Water Research, 1975, 9(12): 1017-1024. doi: 10.1016/0043-1354(75)90095-0
|
[14] |
HENDERSON R K, PARSONS S A, JEFFERSON B. Surfactants as bubble surface modifiers in the flotation of algae dissolved air flotation that utilizes a chemically modified bubble surface[J]. Environmental Science & Technology, 2008, 42: 4883-4888.
|
[15] |
YAP R K, WHITTAKER M, DIAO M, et al. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation[J]. Water Research, 2014, 61: 253-262.
|
[16] |
SHI Y L, YANG J X, MA J, et al. Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation[J]. Frontiers of Environmental Science & Engineering, 2017, 11(6): 1-10.
|
[17] |
ZHANG Z, WU Z L, LIU G M. Interfacial adsorption of methyl orange in liquid phase of foam fractionation using dodecyl dimethyl betaine as the collector[J]. Journal of Industrial and Engineering Chemistry, 2015, 28(25): 184-189.
|
[18] |
ZHANG Q, QU Q, LU T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Part B): 1106-1112.
|
[19] |
BARTRAM J, BURCH M, FALCONER I R, et al. Situation Assessment, Planning and Management[M]. First ed. London: E & FN SPON, 1999.
|
[20] |
ZHANG W J, CAO Q W, XU G L, et al. Flocculation-dewatering behavior of microalgae at different growth stages under inorganic polymeric flocculant treatment: The relationships between algal organic matter and floc dewaterability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11087-11096.
|
[21] |
YAN Y L, QU C T, ZHANG N S, et al. A study on the kinetics of liquid drainage from colloidal gas aphrons (CGAs)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259(1/2/3): 167-172.
|
[22] |
LU X L, ZHANG M, XIE L, et al. Coagulative colloidal gas aphrons generated from polyaluminum chloride (PACl)/dodecyl dimethyl betaine (BS-12) solution: Interfacial characteristics and flotation potential[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 209-217.
|
[23] |
SONG H, LAVOIE M, FAN X J, et al. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa[J]. ISME Journal, 2017, 11(8): 1865-1876. doi: 10.1038/ismej.2017.45
|
[24] |
INSKEEP W P, BLOOM P R. Extinction coefficients of chlorophyll a and b in n,n-dimethylformamide and 80% acetone[J]. Plant Physiology, 1985, 77(2): 483-485. doi: 10.1104/pp.77.2.483
|
[25] |
BAIN C D, CLAESSON P M, LANGEVIN D, et al. Complexes of surfactants with oppositely charged polymers at surfaces and in bulk[J]. Advances in Colloid and Interface Science, 2010, 155(1/2): 32-49.
|
[26] |
ZHANG Z, WU Z, LIU G. Interfacial adsorption of methyl orange in liquid phase of foam fractionation using dodecyl dimethyl betaine as the collector[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 184-189. doi: 10.1016/j.jiec.2015.01.027
|
[27] |
FAN M M, TAO D, RICK H, et al. Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions[J]. Mining Science and Technology (China), 2010, 20(1): 1-19. doi: 10.1016/S1674-5264(09)60154-X
|
[28] |
GERARDO M, HENDE S V D, VERVAEREN H, et al. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants[J]. Algal Research, 2015, 11: 248-262. doi: 10.1016/j.algal.2015.06.019
|
[29] |
BORIS A, ORHAN O, NGUYEN A V, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J]. Advances in Colloid and Interface Science, 2010, 159(1): 1-21.
|
[30] |
SHEN Y, CUI Y, YUAN W. Flocculation optimization of microalga Nannochloropsis oculata[J]. Applied Biochemistry and Biotechnology, 2013, 169(7): 2049-2063. doi: 10.1007/s12010-013-0123-4
|
[31] |
向丽, 邹华, 黄亚元, 等. 稻秆对铜绿微囊藻抑制作用的研究[J]. 环境工程学报, 2011, 5(2): 279-283.
|
[32] |
GENSEMER R W, PLAYLE R C. The bioavailability and toxicity of aluminum in aquatic environments[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(4): 315-450. doi: 10.1080/10643389991259245
|
[33] |
NALEWAJKO C, PAUL B. Effects of manipulations of aluminum concentrations and pH on phosphate uptake and photosynthesis of planktonic communities in two precambrian shield lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42(12): 1946-1953. doi: 10.1139/f85-241
|
[34] |
EDZWALD J K. Dissolved air flotation and me[J]. Water Research, 2010, 44(7): 2077-2106. doi: 10.1016/j.watres.2009.12.040
|
[35] |
SUN F, PEI H Y, HU W R, et al. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes[J]. Separation and Purification Technology, 2013, 115: 123-128. doi: 10.1016/j.seppur.2013.05.004
|