[1] ELLIOTT B M, MACKAY J M, CLAY P, et al. An assessment of the genetic toxicology of antimony trioxide[J]. Genetic Toxicology and Environmental Mutagenesis, 1998, 415(1): 109-117.
[2] CZGNY Z, JAKAB E, BLAZSO M, et al. Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96(12): 69-77.
[3] HE M C, WANG X Q, WU F C, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421-422(3): 41-50.
[4] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151: 326-342.
[5] LIU F, LE X C, MCKNIGHT-WHITFORD A, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010, 32(5): 401-413. doi: 10.1007/s10653-010-9284-z
[6] LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. doi: 10.1016/j.ecoenv.2018.03.024
[7] WANG X Q, HE M C, XI J H, et al. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 2011, 97(1): 4-11. doi: 10.1016/j.microc.2010.05.011
[8] HILLER E, LALINSK B, CHOVAN M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012, 27(3): 598-614. doi: 10.1016/j.apgeochem.2011.12.005
[9] RITCHIE V J, ILGEN A G, MUELLER S H, et al. Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska[J]. Chemical Geology, 2013, 335(1): 172-188.
[10] 符云聪, 李鹏祥, 刘代欢, 等. 不同修复技术去除水中锑的研究进展[J]. 中国农学通报, 2019, 35(9): 102-108. doi: 10.11924/j.issn.1000-6850.casb17110079
[11] INAM M A, KHAN R, PARK D R, et al. Removal of Sb(Ⅲ) and Sb(Ⅴ) by ferric chloride coagulation: Implications of Fe solubility[J]. Water, 2018, 10(4): 418-430. doi: 10.3390/w10040418
[12] KAMEDA T, NAKAMURA M, YOSHIOKA T. Removal of antimonate ions from an aqueous solution by anion exchange with magnesium-aluminum layered double hydroxide and the formation of a brandholzite-like structure[J]. Journal of Environmental Science and Health, 2012, 47(8): 1146-1151. doi: 10.1080/10934529.2012.668121
[13] SONG P P, YANG Z H, ZENG G M, et al. Optimization, kinetics, isotherms, and thermodynamics studies of antimony removal in electrocoagulation process[J]. Water, Air and Soil Pollution, 2015, 226(11): 380-391. doi: 10.1007/s11270-015-2615-z
[14] SUN W M, XIAO E Z, KALIN M, et al. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor[J]. Environmental Pollution, 2016, 215: 213-222. doi: 10.1016/j.envpol.2016.05.008
[15] YU T C, WANG X H, LI C. Removal of antimony by FeCl3-modified granular-activated carbon in aqueous solution[J]. Journal of Environmental Engineering, 2014, 140(9): A4014001.
[16] 张亚平, 张婷, 陈锦芳, 等. 水、土环境中锑污染与控制研究进展[J]. 生态环境学报, 2011, 20(8): 1373-1378. doi: 10.3969/j.issn.1674-5906.2011.08.030
[17] LONG X J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Science, 2020, 90: 189-204. doi: 10.1016/j.jes.2019.12.008
[18] LIAN G Q, WANG B, LEE X, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains[J]. Journal of Environmental Science, 2019, 697: 134119.
[19] LIU T Z, WANG B, FANG J, et al. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(Ⅱ) and Cd(Ⅱ) removal[J]. RSC Advances, 2016, 6(29): 24314-24319. doi: 10.1039/C6RA01895E
[20] 王涛. 黄甜竹笋壳生物炭吸附水溶液中铜离子的研究[D]. 福州: 福州大学, 2018.
[21] 郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
[22] WANG Z H, SHEN D K, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 2016, 150: 1-7. doi: 10.1016/j.chemosphere.2016.02.004
[23] LI X H, DOU X M, LI J Q, et al. Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mechanism[J]. Journal of Environmental Science, 2012, 24(7): 1197-1203. doi: 10.1016/S1001-0742(11)60932-7
[24] 李佳霜, 冒国龙, 赵松炎, 等. 改性生物炭吸附废水中Sb(Ⅴ)的特性[J]. 江苏农业科学, 2019, 47(8): 289-295.
[25] WANG B, LIAN G Q, LEE X, et al. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water[J]. Chemosphere, 2020, 238: 124684. doi: 10.1016/j.chemosphere.2019.124684
[26] LI L, TU H, ZHANG S, et al. Geochemical behaviors of antimony in mining-affected water environment (Southwest China)[J]. Environmental Geochemistry and Health, 2019, 41(6): 2397-2411. doi: 10.1007/s10653-019-00285-8
[27] 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171.
[28] 石程好. 镧负载稻壳基生物炭除磷性能研究[D]. 武汉: 华中科技大学, 2018.
[29] 宁增平, 肖唐付, 杨菲, 等. 锑矿区水体水环境锑污染及硫同位素示踪研究[J]. 矿物岩石地球化学通报, 2011, 30(2): 135-141. doi: 10.3969/j.issn.1007-2802.2011.02.003
[30] LI H B, DONG X L, SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072
[31] WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 2010, 158(5): 1169-1181. doi: 10.1016/j.envpol.2009.10.045
[32] KAMEDA T, KONDO E, YOSHIOKA T. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+-doped Mg-Al layered double hydroxides[J]. Chemical Engineering Journal, 2015, 151: 303-309.
[33] ESZ E A, AMIN N K, ABDELWAHAB O. Removal of lead(Ⅱ) and copper(Ⅱ) from aqueous solution using pomegranate peel as a new adsorbent[J]. Desalination, 2008, 223(1/2/3): 162-173.
[34] 安增莉. 生物炭的制备及其对Pb(Ⅱ)的吸附特性研究[D]. 泉州: 华侨大学, 2011.
[35] 张华. 柚皮基活性炭制备及吸附应用机理研究[D]. 南宁: 广西大学, 2013.
[36] 李璐璐, 张华, 周世伟, 等. 中国南方两类典型土壤对五价锑的吸附行为研究[J]. 土壤学报, 2014, 51(2): 278-285. doi: 10.11766/trxb201307130335
[37] ZHOU Z, LIU Y G, LIU S B, et al. Sorption performance and mechanisms of arsenic(Ⅴ) removal by magnetic gelatin-modified biochar[J]. Chemical Engineering Journal, 2017, 314: 223-231. doi: 10.1016/j.cej.2016.12.113
[38] 李锦, 祖艳群, 李刚, 等. 载镧或铈生物炭吸附水体中As(Ⅴ)的作用机制[J]. 环境科学, 2017, 39(5): 2211-2218.
[39] 李国亭, 冯艳敏, 柴晓琪, 等. 镧改性活性炭纤维高效吸附去除对苯醌[J]. 环境工程学报, 2016, 10(4): 66-72.
[40] 张莹雪, 胥思勤, 李佳霜. Sb(Ⅲ)和Sb(Ⅴ)在不同吸附剂上的吸附特征[J]. 土壤, 2018, 50(1): 139-147.
[41] WANG X Q, HE M C, LIN C Y, et al. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Chemie der Erde-Geochemistry, 2012, 72(S4): 41-47.
[42] ZHAO X Q, DOU X M, MOHAN A, et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247: 250-257. doi: 10.1016/j.cej.2014.02.096
[43] LUO J M, LUO X B, CRITTENDEN J, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science Technology, 2015, 49: 11115-11124. doi: 10.1021/acs.est.5b02903
[44] WANG L, WANG J Y, WANG Z X, et al. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars[J]. Chemical Engineering Journal, 2018, 354: 623-632. doi: 10.1016/j.cej.2018.08.074