[1] |
李辉, 吕斌, 朱艳梅. 反硝化除磷机理及其工艺影响因素研究进展[J]. 能源与环境, 2009(5): 55-57. doi: 10.3969/j.issn.1672-9064.2009.05.024
|
[2] |
尹志轩, 李思玉, 毕学军, 等. 低温条件下复合铁酶促对活性污泥系统脱氮除磷效果的影响[J]. 环境工程, 2018, 36(11): 45-48.
|
[3] |
RAHIMNEJAD M, NAJAFPOUR G D, GHOREYSHI A A, et al. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture[J]. Journal of Microbiology, 2012, 50(4): 575-580. doi: 10.1007/s12275-012-2135-0
|
[4] |
CERVANTES-CARRILLO F J. Quinones as electron acceptors and redox mediators for the anaerobic biotransformation of priority pollutants[D]. Wageningen: Wageningen University, 2002.
|
[5] |
李海波, 廉静, 郭延凯, 等. 氧化还原介体催化强化Paracoccus versutus菌株GW1反硝化特性研究[J]. 环境科学, 2012, 33(7): 2458-2463.
|
[6] |
LI L, WANG J, ZHOU J, et al. Enhancement of nitroaromatic compounds anaerobic biotransformation using a novel immobilized redox mediator prepared by electropolymerization[J]. Bioresource Technology, 2008, 99(15): 6908-6916. doi: 10.1016/j.biortech.2008.01.037
|
[7] |
SUN J, LI W, LI Y, et al. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell[J]. Bioresource Technology, 2013, 142: 407-414. doi: 10.1016/j.biortech.2013.05.039
|
[8] |
HUANG W, CHEN J, HU Y, et al. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2349-2359. doi: 10.1016/j.ijhydene.2016.09.216
|
[9] |
苑宏英, 孙锦绣, 王小佩, 等. 投加介体强化低温污水生物反硝化脱氮的研究[J]. 环境科学与技术, 2016, 39(11): 90-94.
|
[10] |
国家环境保护局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[11] |
FYTIANOS K, KOTZAKIOTI A. Sequential fractionation of phosphorus in lake sediments of Northern Greece[J]. Environmental Monitoring and Assessment, 2005, 100(1/2/3): 191-200.
|
[12] |
KAISERLI A, VOUTSA D, SAMARA C. Phosphorus fractionation in lake sediments: Lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8): 1147-1155. doi: 10.1016/S0045-6535(01)00242-9
|
[13] |
YIN X, QIAO S, ZHOU J, et al. Effects of redox mediators on nitrogen removal performance by denitrifying biomass and the activity of nar and nir[J]. Chemical Engineering Journal, 2014, 257: 90-97. doi: 10.1016/j.cej.2014.07.029
|
[14] |
ZHOU S, ZHANG X, FENG L. Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria[J]. Bioresource Technology, 2010, 101(6): 1603-1610. doi: 10.1016/j.biortech.2009.09.032
|
[15] |
XI Z, GUO J, LIAN J, et al. Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors[J]. Bioresource Technology, 2013, 140: 22-27. doi: 10.1016/j.biortech.2013.04.065
|
[16] |
UCHIMIYA M, STONE A T. Reversible redox chemistry of quinones: Impact on biogeochemical cycles[J]. Chemosphere, 2009, 77(4): 451-458. doi: 10.1016/j.chemosphere.2009.07.025
|
[17] |
KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3): 195-200. doi: 10.1038/ngeo2084
|
[18] |
DOS SANTOS A B, BISSCHOPS I A E, CERVANTES F J, et al. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 ℃) and thermophilic (55 ℃) treatments for decolourisation of textile wastewaters[J]. Chemosphere, 2004, 55(9): 1149-1157. doi: 10.1016/j.chemosphere.2004.01.031
|
[19] |
王亚宜. 反硝化除磷脱氮机理及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2004.
|
[20] |
吴光学, 管运涛, 蒋展鹏, 等. 强化生物除磷的机理模型研究进展[J]. 环境污染与防治, 2004, 26(4): 259-262. doi: 10.3969/j.issn.1001-3865.2004.04.007
|
[21] |
田淑媛, 王景峰, 杨睿, 等. 厌氧下的PHB和聚磷酸盐及其生化机理研究[J]. 中国给水排水, 2000, 16(7): 5-7. doi: 10.3321/j.issn:1000-4602.2000.07.002
|
[22] |
HANSEN K A S. Removal of Phosphate by Poly-P Accumulating Organisms in Activated Sludge and Their Fate in Digesters[M]. Aalborg: Aalborg Universitetsforlag, 2019.
|