[1] XIE M, LEE J, NGHIEM L, ELIMELECH M. Role of pressure in organic fouling in forward osmosis and reverse osmosis[J]. Journal of Membrane Science, 2015, 493: 748-754. doi: 10.1016/j.memsci.2015.07.033
[2] TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 5044-5053.
[3] 宁静恒, 赵俊, 李玉平, 等. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190.
[4] HU M, ZHENG S, MI B. Organic fouling of graphene oxide membranes and its implications for membrane fouling control in engineered osmosis[J]. Environmental Science & Technology, 2016, 50(2): 685-693.
[5] PARK M J, PHUNTSHO S, HE T, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493: 496-507. doi: 10.1016/j.memsci.2015.06.053
[6] 樊晋琼, 苏燕, 王铎. 二氧化钛/聚酰胺正渗透复合膜的制备与表征[J]. 水处理技术, 2012, 38(9): 43-46. doi: 10.3969/j.issn.1000-3770.2012.09.011
[7] 肖维溢. 新型高通量聚酰胺复合正渗透膜制备及其性能研究[D]. 青岛: 中国海洋大学, 2015.
[8] 张梦轲, 王越, 刘艳秋, 等. 操作条件对正渗透分离性能的影响[J]. 化学工业与工程, 2018, 35(6): 32-40.
[9] YE G, LEE J, PERREAULT F, ELIMELECH M. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes forintegrated ‘defending’ and ‘attacking’ strategies against biofouling[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23069-23079.
[10] FARIA A F, LIU C, XIE M, et al. Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control[J]. Journal of Membrane Science, 2016, 525: 146-156.
[11] YANG E, CHAE K J, ALAYANDE A B, et al. Concurrent performance improvement and biofouling mitigation in osmotic microbial fuel cells using a silver nanoparticle-polydopamine coated forward osmosis membrane[J]. Journal of Membrane Science, 2016, 513: 217-225. doi: 10.1016/j.memsci.2016.04.028
[12] ZHANG X, TIAN J, GAO S, et al. In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(arylene ether sulfone)for anti-fouling in emulsified oil/water separation[J]. Journal of Membrane Science, 2017, 527: 26-34. doi: 10.1016/j.memsci.2017.01.002
[13] LINARES R V, BUCS S S, LI Z, et al. Impact of spacer thickness on biofouling in forward osmosis[J]. Water Research, 2014, 57: 223-233. doi: 10.1016/j.watres.2014.03.046
[14] RAHIMPOUR A, JAHANSHAHI M, MOLLAHOSSEINI A, et al. Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes[J]. Desalination, 2012, 285: 31-38. doi: 10.1016/j.desal.2011.09.026
[15] CHANG X, WANG Z, QUAN S, et al. Exploring the synergetic effects of graphene oxide(GO) and polyvinylpyrrodione(PVP) on poly(vinylylidenefluoride)(PVDF) ultrafiltration membrane performance[J]. Applied Surface Science, 2014, 316: 537-548. doi: 10.1016/j.apsusc.2014.07.202
[16] LEO C P, LEE W P C, AHMAD A L, et al. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid[J]. Separation & Purification Technology, 2012, 89: 51-56.
[17] ZHAO X, LI J, LIU C, et al. Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer[J]. Desalination, 2017, 408: 102-109. doi: 10.1016/j.desal.2017.01.021
[18] 龚烨霞, 左行涛, 张事, 等. 纳米氧化锌改性聚偏氟乙烯超滤膜的性能[J]. 环境工程学报, 2017, 11(7): 4091-4096. doi: 10.12030/j.cjee.201605244
[19] AYYARU S, DINH T T L, AHN Y H. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle[J]. Chemosphere, 2020, 241: 1-11.
[20] DILSHAD M R, ISLAM A, SABIR A, et al. Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG-600 blended membranes for CO2/N2 separation[J]. Journal of Industrial & Engineering Chemistry, 2017, 55: 65-73.
[21] ANLOVAR A, KOGEJ K, OREL Z C, et al. Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology[J]. Crystal Growth & Design, 2014, 14(9): 4262-4269.
[22] 朱旭, 石市委, 夏茹, 等. 不同改性过程对氧化锌薄膜的光学及亲水性能的影响[J]. 真空科学与技术学报, 2015, 35(3): 40-44.
[23] FENG S, LI D, LOW Z X, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93. doi: 10.1016/j.memsci.2017.02.042
[24] 孙发哲. 纳米ZnO和ZnO-Ag异质结的制备及抗菌性能研究[D]. 武汉: 华中科技大学, 2009.
[25] 佘利娟, 韩静香, 刘宝春. 硅烷偶联剂对纳米氧化锌的表面改性研究[J]. 化学时刊, 2010, 24(6): 15-19.
[26] LI Y, YANG Y, LI C, et al. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide[J]. RSC Advances, 2019, 9(12): 6502-6509. doi: 10.1039/C8RA08838A
[27] ZHANG R X, BRAEKEN L, LUIS A, et al. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine[J]. Journal of Membrane Science, 2013, 437(12): 179-188.
[28] LIU Z Y, HU Y X. Sustainable antibiofouling properties of thin film composite forward osmosis membrane with rechargeable silver nanoparticles loading[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21666-21673.
[29] ZHANG X, TIAN J, SHI W, et al. High performance thin-film composite(TFC) forward osmosis(FO) membrane fabricated on novel hydrophilic disulfonated poly (arylene ether sulfone) multiblock copolymer/polysulfone substrate[J]. Journal of Membrane Science, 2016, 520: 529-539. doi: 10.1016/j.memsci.2016.08.005
[30] SHI H X, WANG C J, ZHAO Y Y, et al. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite[J]. Applied Catalysis B: Environmental, 2019, 254: 403-413. doi: 10.1016/j.apcatb.2019.05.020
[31] QIU M, HE C J. Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property[J]. Applied Surface Science, 2018, 455: 492-501. doi: 10.1016/j.apsusc.2018.06.020
[32] QI L, HU Y, LIU Z, et al. Improved anti-biofouling performance of thin-film composite forward-osmosis membranes containing passive and active moieties[J]. Environmental Science & Technology, 2018, 52(17): 9684-9693.
[33] 毛学语, 熊娟, 蔡晨, 等. 高通量强抗菌纳米氧化锌/聚醚砜膜研究[J]. 水处理技术, 2018, 44(12): 64-67.
[34] LIM S, PART M J, PHUNTSHO S, et al. Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis[J]. Polymer, 2017, 110: 36-48. doi: 10.1016/j.polymer.2016.12.066
[35] RASTGAR M, SHAKERI A, BOZORG A, et al. Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes[J]. Desalination, 2017, 421: 179-189. doi: 10.1016/j.desal.2017.01.040
[36] MAHLANGU O T, NACKAERTS R, MAMBA B B, et al. Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater[J]. Water Science & Technology, 2017, 76: 501-514.
[37] CHUNG Y T, MAHMOUDI E, MOHAMMAD A, et al. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control[J]. Desalination, 2017, 402: 123-132. doi: 10.1016/j.desal.2016.09.030
[38] 唐二军. 氧化锌/聚合物复合微粒材料的制备及抗菌特性研究[D]. 天津: 天津大学, 2005.
[39] 赵玉云, 田月, 蒋兴宇. 金纳米颗粒对革兰氏阳性菌的抗菌活性研究[C]//中国食品药品检定研究院. 生物材料与组织工程产品质量控制国际研讨会. 成都, 2011: 95-102.
[40] 况慧娟, 杨林, 许恒毅, 等. 纳米氧化锌抗菌性能及机制的研究进展[J]. 中国药学及毒理学杂志, 2015, 29(1): 153-157.