[1] |
CAO X, ZHANG S, WANG H, et al. Azo dye as part of co-substrate in a biofilm electrode reactor-microbial fuel cell coupled system and an analysis of the relevant microorganisms[J]. Chemosphere, 2019, 216(2): 742-748.
|
[2] |
YAO J, DOU C, WEI S, et al. Using ecological reducing agents instead of sodium sulphide in dyeing with CI sulphur black 1[J]. Coloration Technology, 2015, 131(5): 379-383. doi: 10.1111/cote.12168
|
[3] |
NGUYEN T A, JUANG R. Treatment of waters and wastewaters containing sulfur dyes: A review[J]. Chemical Engineering Journal, 2013, 219: 109-117. doi: 10.1016/j.cej.2012.12.102
|
[4] |
冯雅丽, 于莲, 李浩然, 等. 微生物燃料电池降解焦化废水过程研究[J]. 中国环境科学, 2018, 38(11): 4099-4105. doi: 10.3969/j.issn.1000-6923.2018.11.014
|
[5] |
REN Y, CHEN J, LI X, et al. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment[J]. Bioelectrochemistry, 2018, 120: 145-149. doi: 10.1016/j.bioelechem.2017.12.007
|
[6] |
ROZENDAL R A, HAMELERS H V M, BUISMAN C J N. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environmental science & Technology, 2006, 40(17): 5206-5211.
|
[7] |
SUN M, TONG Z H, SHENG G P, et al. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell[J]. Biosensors & Bioelectronics, 2011, 26(2): 470-476.
|
[8] |
GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4): 327-334.
|
[9] |
YAO S, HE Y L, SONG B Y, et al. Improving the wetting properties of separator to enhance the performance of microbial fuel cells[J]. International Journal of Heat & Mass Transfer, 2015, 89: 102-109.
|
[10] |
ZHAO F, RAHUNEN N, VARCOE J, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal[J]. Biosensors & Bioelectronics, 2009, 24(7): 1931-1936.
|
[11] |
MAHMOOD Q, ZHENG P, HAYAT Y, et al. Effect of pH on anoxic sulfide oxidizing reactor performance[J]. Bioresource Technology, 2008, 99(8): 3291-3296. doi: 10.1016/j.biortech.2007.07.006
|
[12] |
KRISHNAKUMAR B, MAJUMDAR S, MANILAL V B, et al. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR)[J]. Water Research, 2005, 39(4): 639-647. doi: 10.1016/j.watres.2004.11.015
|
[13] |
SUN H, ZHANG Y, WU S, et al. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion[J]. Science of the Total Environment, 2019, 655(3): 1439-1447.
|
[14] |
TAN Y C, KHARKWAL S, CHEW K K W, et al. Enhancing the robustness of microbial fuel cell sensor for continuous copper(II) detection against organic strength fluctuations by acetate and glucose addition[J]. Bioresource Technology, 2018, 259: 357-364. doi: 10.1016/j.biortech.2018.03.068
|
[15] |
CAKICI M, KAKARLA R R, ALONSO-MARROQUIN F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes[J]. Chemical Engineering Journal, 2017, 309: 151-158. doi: 10.1016/j.cej.2016.10.012
|
[16] |
CAO X, WANG H, LI X Q, et al. Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system[J]. Bioresource Technology, 2017, 227: 273-278. doi: 10.1016/j.biortech.2016.12.043
|
[17] |
KONG F, WANG A, CHENG H, et al. Accelerated decolorization of azo dye congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment[J]. Bioresource Technology, 2014, 151: 332-339. doi: 10.1016/j.biortech.2013.10.027
|
[18] |
DAHL C. Sulfur metabolism in phototrophic bacteria[J]. Advances in Microbial Physiology, 2009, 54: 103.
|
[19] |
SUN M, MU Z X, CHEN Y P, et al. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3372-3377.
|
[20] |
KORNEEL R, KIRSTEN V D S, LOIS M, et al. Microbial fuel cells for sulfide removal[J]. Environmental Science & Technology, 2006, 40(17): 5218-5224.
|
[21] |
KRISHNAKUMAR B, MANILAL V B. Bacterial oxidation of sulphide under denitrifying conditions[J]. Biotechnology Letters, 1999, 21(5): 437-440. doi: 10.1023/A:1005584920800
|