[1] |
胡敏, 何凌燕, 黄晓锋, 等. 北京大气细粒子和超细粒子理化特征、来源及形成机制[M]. 北京: 科学出版社, 2009.
|
[2] |
徐明厚, 于敦喜, 刘小伟. 燃煤可吸入颗粒物的形成与排放[M]. 北京: 科学出版社, 2009.
|
[3] |
于洋, 孙德帅, 颜培玲, 等. 湍流与化学团聚耦合促进燃煤细颗粒物的清除[J]. 环境工程学报, 2017, 11(11): 5949-5955. doi: 10.12030/j.cjee.201704003
|
[4] |
陈冬林, 吴康, 米建春, 等. 300 MW燃煤锅炉机组超细颗粒聚并器的实验研究[J]. 环境工程学报, 2015, 9(4): 1926-1930. doi: 10.12030/j.cjee.20150466
|
[5] |
SAFFMAN P G, TURNER J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1): 16-30. doi: 10.1017/S0022112056000020
|
[6] |
SUNDARAM S, COLLINS L R. Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations[J]. Journal of Fluid Mechanics, 1997, 335: 75-109. doi: 10.1017/S0022112096004454
|
[7] |
BALACHANDAR S. Particle coagulation in homogeneous turbulence[D]. Providence, Rhodes Island: Brown University, 1988.
|
[8] |
MEYER C J, DEGLON D A. Particle collision modeling: A review[J]. Minerals Engineering, 2011, 24(8): 719-730. doi: 10.1016/j.mineng.2011.03.015
|
[9] |
YAMAMOTO Y, POTTHOFF M, TANAKA T, et al. Large-eddy simulation of turbulent gas-particle flow in a vertical channel: Effect of considering inter-particle collisions[J]. Journal of Fluid Mechanics, 2001, 442: 303-334. doi: 10.1017/S0022112001005092
|
[10] |
RANI S, VANKA S. Direct numerical simulation of two-way coupling effects in a particle-laden turbulent pipe flow[C]//American Institute of Aeronautics & Astronautics. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Sydney, Australia, 2000: 3570-3580.
|
[11] |
TANAKA T, TSUJI Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision[J]. Gas-Solid Flows, 1991, 121: 123-128.
|
[12] |
樊建人, 胡桂林, 姚军, 等. 气固两相圆柱绕流的直接数值模拟[J]. 工程热物理学报, 2003, 24(3): 433-436. doi: 10.3321/j.issn:0253-231X.2003.03.021
|
[13] |
DERKSEN J J, SUNDARESAN S, VAN DEN AKKER H E A. Simulation of mass-loading effects in gas-solid cyclone separators[J]. Powder Technology, 2006, 163(1): 59-68.
|
[14] |
章鹏飞, 米建春, 潘祖明. 装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(6): 1625-1632.
|
[15] |
章鹏飞, 米建春, 潘祖明. 烟气流速和装置元件角度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(10): 2714-2720.
|
[16] |
陈冬林, 杨陈好, 吴康, 等. 烟气参数对细颗粒湍流聚并的影响[J]. 环境工程学报, 2017, 11(9): 5084-5090. doi: 10.12030/j.cjee.201609226
|
[17] |
金莉, 谭永华. 火焰稳定器综述[J]. 火箭推进, 2006, 32(1): 30-34. doi: 10.3969/j.issn.1672-9374.2006.01.006
|
[18] |
YANG J T, TSAI G L, WANG W B. Near-wake characteristics of various v-shaped bluff bodies[J]. Journal of Propulsion and Power, 1994, 10(1): 47-53. doi: 10.2514/3.23710
|
[19] |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
|
[20] |
SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195. doi: 10.1007/s00162-006-0015-0
|
[21] |
ZHANG J, MI J, WANG H. A New mesh-independent model for droplet/particle collision[J]. Aerosol Science and Technology, 2012, 46(6): 622-630. doi: 10.1080/02786826.2011.649809
|