[1] ZHONG Y, GAO X, HUO W, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. doi: 10.1016/j.fuproc.2008.04.004
[2] HRASTEL I, GERBEC M, STERGARŠEK A. Technology optimization of wet flue gas desulfurization process[J]. Chemical Engineering & Technology, 2010, 30(2): 220-233.
[3] 李春情, 马丽萍, 晏晓丹, 等. 脱硫石膏与碳酸铵反应过程及反应机理[J]. 环境工程学报, 2015, 9(7): 3441-3447. doi: 10.12030/j.cjee.20150759
[4] WARYCH J, SZYMANOWSKI M. Optimum values of process parameters of the “wet limestone flue gas desulfurization system”[J]. Chemical Engineering & Technology, 2015, 25(4): 427-432.
[5] 贾锋平, 王刚. 我国二氧化硫排放现状分析[J]. 宁波节能, 2017(5): 20-28.
[6] 侯党社. 空气污染现状及咸阳市大气中SO2浓度变化研究[J]. 宝鸡文理学院学报(自然科学版), 2018, 38(2): 40-48.
[7] 陈滑维, 蔡浩洋, 张阳. 我国部分地区大气污染现状及其分布特征[J]. 中国环境管理干部学院学报, 2017, 27(4): 68-72.
[8] 桑绮, 乐园园, 徐晗. 火电厂大气污染物排放标准、现状及减排技术[J]. 浙江电力, 2011, 30(12): 42-46. doi: 10.3969/j.issn.1007-1881.2011.12.012
[9] YE W Q, LI Y J, KONG L, et al. Feasibility of flue-gas desulfurization by manganese oxides[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3089-3094. doi: 10.1016/S1003-6326(13)62838-1
[10] 唐杰林. 燃煤烟气脱硫脱硝技术研究进展[J]. 化工管理, 2016(32): 156-156. doi: 10.3969/j.issn.1008-4800.2016.32.122
[11] 苗强. 燃煤脱硫技术研究现状及发展趋势[J]. 洁净煤技术, 2015, 21(2): 59-63.
[12] JIN D S, DESHWAL B R, PARK Y S, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, 135(1): 412-417.
[13] NOLAN P S, REDINGER K E, AMRHEIN G T, et al. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology, 2004, 85(6): 587-600.
[14] NYGAARD H G, KIIL S, JOHNSSON J E, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber[J]. Fuel, 2004, 83(9): 1151-1164. doi: 10.1016/j.fuel.2003.12.007
[15] BAO J, YANG L, YAN J. Experimental study on demercurization performance of wet flue gas desulfurization system[J]. Chinese Journal of Chemistry, 2009, 27(11): 2242-2248. doi: 10.1002/cjoc.200990376
[16] CÓRDOB A, PATRICI A. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. doi: 10.1016/j.fuel.2014.12.065
[17] GAO X, DING H L, DU Z, et al. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization[J]. Applied Energy, 2010, 87(8): 2647-2651. doi: 10.1016/j.apenergy.2010.03.023
[18] SHEN Z G, CHEN X, TONG M, et al. Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct[J]. Fuel, 2013, 105: 578-584. doi: 10.1016/j.fuel.2012.07.050
[19] ZHU J, YE S C, BAI J, et al. A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J]. Fuel Processing Technology, 2015, 129: 15-23. doi: 10.1016/j.fuproc.2014.07.002
[20] 左莉娜, 贺前锋, 刘德华. 湿法烟气脱硫技术研究进展[J]. 环境工程, 2013, 31(S1): 412-416.
[21] 魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4): 768-774. doi: 10.11779/CJGE201404024
[22] 刘智安, 张知见, 刘启旺. 液相生化法烟气脱硫机理及动力学[J]. 应用基础与工程科学学报, 2011, 19(4): 644-652. doi: 10.3969/j.issn.1005-0930.2011.04.014
[23] 王亮, 刘京春, 王力超, 等. 煤浆法烟气脱硫与Fe2+/Fe3+催化氧化脱硫工艺研究比较[J]. 科技信息, 2011(1): 30-30.
[24] 贾丽娟, 张冬冬, 殷在飞, 等. 磷矿浆脱硫新技术及工业应用[J]. 磷肥与复肥, 2016, 31(3): 39-41. doi: 10.3969/j.issn.1007-6220.2016.03.015
[25] NIE Y X, LI S, WU C J, et al. Efficient removal of SO2 from flue gas with phosphate rock slurry and investigation of reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2018, 57: 15138-15146.
[26] 李创, 张冬冬, 宁平, 等. 无机、有机添加剂对磷矿浆脱硫强化的影响[J]. 环境工程学报, 2018, 12(7): 150-157.
[27] LIU J, ZHANG P, LIU P, et al. Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force[J]. Molecular Imaging, 2011, 11(1): 58-66.
[28] 曾意翔. 超声波技术应用现状浅析[J]. 技术与市场, 2015, 22(11): 144-144. doi: 10.3969/j.issn.1006-8554.2015.11.090
[29] BHASARKAR J B, CHAKMA S, MOHOLKAR V S. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound[J]. Ultrasonics Sonochemistry, 2015, 24: 98-106. doi: 10.1016/j.ultsonch.2014.11.008
[30] 赵洪英, 蔡乐才. 超声波雾化器雾滴飞行时间的分析[J]. 四川理工学院学报(自然科学版), 2010, 23(1): 88-90.
[31] 张文俊, 武明亮, 郭丽潇, 等. 超声雾化频率与雾化粒径关系的实验研究[J]. 压电与声光, 2013, 35(6): 886-888. doi: 10.3969/j.issn.1004-2474.2013.06.031
[32] 黄晖, 姚熹, 汪敏强, 等. 超声雾化系统的雾化性能测试[J]. 压电与声光, 2004, 26(1): 62-64. doi: 10.3969/j.issn.1004-2474.2004.01.019
[33] MESSING G L, ZHANG S, JAYANTHI G V. Ceramic powder synthesis by spray pyrolysis[J]. Journal of the American Ceramic Society, 2010, 76(11): 2707-2726.
[34] PATIL P S. Versatility of chemical spray pyrolysis technique[J]. Materials Chemistry & Physics, 1999, 59(3): 185-198.
[35] 沈耀亚, 赵德智, 许凤军. 功率超声在化工领域中的应用现状和发展趋势措施[J]. 现代化工, 2000, 20(10): 14-18. doi: 10.3321/j.issn:0253-4320.2000.10.003
[36] CAMARA C G, HOPKINS S D, SUSLICK K S. Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone[J]. Physical Review Letters, 2007, 98(6): 1-4.
[37] CABANAS-POLO S, SUSLICK K S, SANCHEZ-HERENCIA A J. Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders[J]. Ultrasonics Sonochemistry, 2011, 18(4): 901-906. doi: 10.1016/j.ultsonch.2010.11.017
[38] 刘卉卉. 低浓度SO2磷矿浆液相催化氧化净化研究[D]. 昆明: 昆明理工大学, 2005.