[1] 刘铭羽, 夏梦华, 李远航, 等. 3种基质材料对高浓度养殖废水处理效果及降解过程[J]. 环境科学, 2019, 40(8): 3650-3659.
[2] 郑效旭, 李慧莉, 徐圣君, 等. SBR串联生物强化稳定塘处理养猪废水工艺优化[J/OL]. 环境工程学报: 1-13[2019-09-06]. http://kns.cnki.net/kcms/detail/11.5591.x.20190528.0918.002.html.
[3] 白晓龙, 杨春和. 农村畜禽养殖废水处理技术现状与展望[J]. 中国资源综合利用, 2015, 33(6): 30-34. doi: 10.3969/j.issn.1008-9500.2015.06.018
[4] MARZO A, BO L D. Chromatography as an analytical tool for selected antibiotic classes: A reappraisal addressed to pharmacokinetic applications[J]. Journal of Chromatography A, 1998, 812(1/2): 17-34.
[5] GAROMA T, UMAMAHESHWAR S K, MUMPER A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation[J]. Chemosphere, 2010, 79(8): 814-820. doi: 10.1016/j.chemosphere.2010.02.060
[6] WILKE M S, LOVERING A L, STRYNADKA N C J. Beta-lactam antibiotic resistance: a current structural perspective[J]. Current Opinion in Microbiology, 2005, 8(5): 525-533. doi: 10.1016/j.mib.2005.08.016
[7] 梁忠. 抗生素52%为兽用[J]. 中国禽业导刊, 2015(12): 75.
[8] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science and Technology, 2015, 49(11): 6772-6782. doi: 10.1021/acs.est.5b00729
[9] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[10] 郑佳伦, 刘超翔, 刘琳, 等. 畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1): 37-47. doi: 10.7524/j.issn.0254-6108.2017.01.2016061402
[11] ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444: 183-185. doi: 10.1016/j.scitotenv.2012.11.087
[12] ZHOU L J, YING G G, LIU S, et al. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China[J]. Environmental Science Processes and Impacts, 2013, 15(4): 802-813. doi: 10.1039/c3em30682h
[13] 陈雯, 张立平, 梁沛枫, 等. 某三级综合医院2017年度细菌耐药性监测分析[J]. 中华医院感染学杂志, 2019, 29(23): 3521-3525.
[14] LIU C J, LI Y Z, LUAN Z K, et al. Adsorption removal of phosphate from aqueous solution by active red mud[J]. Journal of Environmental Sciences, 2007, 19(10): 1166-1170. doi: 10.1016/S1001-0742(07)60190-9
[15] 干方群, 徐子昊, 杨一帆, 等. 高岭土对畜禽废水中磷的净化效果及其费效分析[J]. 生态与农村环境学报, 2019, 35(6): 795-800.
[16] KHAN J A, HE X X, SHAH S N, et a1. Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl-atrazine in water with ·OH and $ {\rm{SO}}_4^{ \cdot - }$ based-AOPs[J]. Chemical Engineering Journal, 2017, 325: 485-494. doi: 10.1016/j.cej.2017.05.011
[17] HUANG M H, TIAN S X, CHEN D H, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3[J]. Journal of Environmental Sciences, 2012, 24(9): 1594-1599. doi: 10.1016/S1001-0742(11)60973-X
[18] CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70-77. doi: 10.1016/j.biortech.2017.04.023
[19] 唐凯. 国内畜禽养殖废水处理技术的研究进展[J]. 应用化工, 2018, 47(10): 2274-2278. doi: 10.3969/j.issn.1671-3206.2018.10.052
[20] 操奕. USR-两级A/O组合工艺处理奶牛场废水应用研究[D]. 合肥: 合肥工业大学, 2014.
[21] 李珊珊. 物化-生化组合工艺处理完达山奶牛场废水的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[22] 温飞. 折流厌氧-好氧组合处理畜禽养殖废水现场试验研究[D]. 杭州: 浙江工业大学, 2017.
[23] 金要勇, 孟海玲, 刘再亮, 等. 奶牛养殖废水厌氧出水的吹脱混凝处理试验研究[J]. 农业环境科学学报, 2015, 34(2): 384-390. doi: 10.11654/jaes.2015.02.024
[24] 韩跃飞. 养猪场废水中抗生素去除技术研究[D]. 上海: 华东理工大学, 2019.
[25] LI D, YANG M, HU J Y, et al. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river[J]. Water Research, 2008, 42(1/2): 307-317.
[26] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13. doi: 10.1016/j.ecolind.2007.06.002
[27] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science and Technology, 2010, 44(9): 3468-3473. doi: 10.1021/es903490h
[28] ZHAO W T, SUI Q, MEI X B, et al. Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition[J]. Science of the Total Environment, 2018, 633: 668-676. doi: 10.1016/j.scitotenv.2018.03.207
[29] YANG S F, LIN C F, LIN A Y C, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11): 3389-3397. doi: 10.1016/j.watres.2011.03.052
[30] MULLERA E, SCHUSSLER W, HORN H, et al. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source[J]. Chemosphere, 2013, 92(8): 969-978. doi: 10.1016/j.chemosphere.2013.02.070
[31] BATT A L, KIM S, AGA D S. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J]. Environmental Science and Technology, 2006, 40(23): 7367-7373. doi: 10.1021/es060835v
[32] FERNANDEZ-FONTAINA E, GOMES I B, AGA D S, et al. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions[J]. Science of the Total Environment, 2016, 541: 1439-1447. doi: 10.1016/j.scitotenv.2015.10.010