[1] |
王艳伟, 李书鹏, 康绍果, 等. 中国工业污染场地修复发展状况分析[J]. 环境工程, 2017, 35(10): 175-178.
|
[2] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2019-11-01]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm, 2014.
|
[3] |
国土资源部土地整治中心. 土地整治蓝皮书[M]. 北京: 社会科学文献出版社, 2014.
|
[4] |
HU L G, CAI Y, JIANG G B. Occurrence and speciation of polymeric chromium (III), monomeric chromium (III) and chromium (Ⅵ) in environmental samples[J]. Chemosphere, 2016, 156: 14-20. doi: 10.1016/j.chemosphere.2016.04.100
|
[5] |
HOPKINS J. IARC monographs on the evaluation of carcinogenic risks to humans: Volume 49. Chromium, nickel and welding[J]. Food & Chemical Toxicology, 1991, 29(9): 647-648.
|
[6] |
ADAM V, QUARANTA G, LOYAUX-LAWNICZAK S. Terrestrial and aquatic ecotoxicity assessment of Cr(Ⅵ) by the ReCiPe method calculation (LCIA): Application on an old industrial contaminated site[J]. Environmental Science and Pollution Research, 2013, 20(5): 3312-3321. doi: 10.1007/s11356-012-1254-9
|
[7] |
环境保护部, 发展改革委, 工业信息化部, 等. “十二五”危险废物污染防治规划[EB/OL]. [2019-11-01]. http://www.mee.gov.cn/gkml/hbb/bwj/201210/t20121023_240228.htm, 2012.
|
[8] |
刘仕业, 岳昌盛, 彭犇, 等. 铬污染毒性土壤清洁修复研究进展与综合评价[J]. 工程科学学报, 2018, 40(11): 1275-1287.
|
[9] |
DI PALMA L, MANCINI D, PETRUCCI E. Experimental assessment of chromium mobilization from polluted soil by washing[J]. Chemical Engineering Journal, 2012, 28: 145-50.
|
[10] |
JEAN L, BORDAS F, GAUTIER-MOUSSARD C, et al. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia[J]. Environmental Pollution, 2008, 153(3): 555-563. doi: 10.1016/j.envpol.2007.09.013
|
[11] |
黄川, 李柳, 黄珊, 等. 重金属污染土壤的草酸和EDTA混合淋洗研究[J]. 环境工程学报, 2014, 8(8): 3480-3486.
|
[12] |
陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10): 2845-2854. doi: 10.12030/j.cjee.201804192
|
[13] |
DARKO H, TATJANA D, RUZICA S, et al. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling[J]. Journal of the Serbian Chemical Society, 2012, 77(1): 119-129. doi: 10.2298/JSC101216154A
|
[14] |
朱文会, 王夏晖, 何军, 等. 基于粒径分布的不同异位修复工艺除Cr特性[J]. 环境工程学报, 2018, 12(6): 1783-1790. doi: 10.12030/j.cjee.201712091
|
[15] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[16] |
USEPA. Method 3060A alkaline digestion for hexavalent chromium[S]. Washington DC: United States Environmental Protection Agency, 1996.
|
[17] |
USEPA. Method 7196A chromium, hexavalent(colorimetric)[S]. Washington DC: United States Environmental Protection Agency, 1992.
|
[18] |
生态环境部. 土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度计: HJ 491-2019[S]. 北京: 中国环境科学出版社, 2019.
|
[19] |
王海豹, 李曼, 戴利, 等. 铬渣污染土壤的淋洗法修复[J]. 齐鲁工业大学学报(自然科学版), 2014, 28(4): 59-63.
|
[20] |
陶冶. 镉铬污染土壤淋洗剂筛选研究[D]. 长沙: 中南大学, 2013.
|
[21] |
陈杰. 有机酸淋洗法和固化稳定化法修复重金属污染土壤研究[D]. 杭州: 浙江大学, 2015.
|
[22] |
李玉双, 胡晓钧, 宋雪英, 等. 柠檬酸对重金属复合污染土壤的淋洗修复效果与机理[J]. 沈阳大学学报(自然科学版), 2012, 24(2): 6-9.
|
[23] |
TANDY S, BOSSART K, MUELLER R, et al. Extraction of heavy metals from soils using biodegradable chelating agents[J]. Environmental Science & Technology, 2004, 38(3): 937-944.
|
[24] |
GÜÇLÜ K, APAK R. Modeling the adsorption of free and heavy metal complex-bound EDTA onto red mud by a nonelectrostatic surface complexation model[J]. Journal of Colloid and Interface Science, 2003, 260(2): 280-290. doi: 10.1016/S0021-9797(03)00045-6
|
[25] |
胡静. 铬污染土壤电化学淋洗还原修复实验研究[D]. 重庆: 重庆大学, 2017.
|
[26] |
许端平, 李晓波, 孙璐. 有机酸对土壤中Pb和Cd淋洗动力学特征及去除机理[J]. 安全与环境学报, 2015, 15(3): 261-266.
|
[27] |
王曲漪, 丁竹红, 胡忻, 等. EDTA对污染土壤水稳团聚体Cu、Zn、Pb的解吸作用[J]. 农业环境科学学报, 2012, 31(7): 1324-1329.
|
[28] |
ZHANG T T, XUE Q, WEI M L. Leach ability and stability of hexavalent-chromium-contaminated soil stabilized by ferrous sulfate and calcium polysulfide[J]. Applied Sciences, 2018, 8(9): 1431. doi: 10.3390/app8091431
|
[29] |
BEGUM Z A, RAHMAN I M M, SAWAI H, et al. Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils[J]. Water, Air & Soil Pollution, 2013, 224(3): 1381.
|
[30] |
LIAO Y P, MIN X B, YANG Z H, et al. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation[J]. Environmental Science and Pollution Research, 2014, 21(1): 379-388. doi: 10.1007/s11356-013-1919-z
|
[31] |
李玉姣, 温雅, 郭倩楠, 等. 有机酸和FeCl3复合浸提修复Cd、Pb污染农田土壤的研究[J]. 农业环境科学学报, 2014, 33(12): 2335-2342. doi: 10.11654/jaes.2014.12.009
|
[32] |
DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31. doi: 10.1016/j.jhazmat.2007.10.043
|
[33] |
GUO X F, WEI Z B, WU Q T, et al. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments[J]. Chemosphere, 2016, 147: 412-419. doi: 10.1016/j.chemosphere.2015.12.087
|
[34] |
CERQUEIRA B, ARENAS-LAGO D, ANDRADE M L, et al. Using time of flight secondary ion mass spectrometry and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy to determine the role of soil components in competitive copper and cadmium migration and fixation in soils[J]. Geoderma, 2015, 251: 65-77.
|
[35] |
GALAN E, CARRETERO M I, FERNANDEZ-CALIANI J C. Effects of acid mine drainage on clay minerals suspended in the Tinto River (Rio Tinto, Spain). An experimental approach[J]. Clay Minerals, 1999, 34(1): 99-108. doi: 10.1180/000985599546118
|
[36] |
SREERAM K J, TIWARI M K, RAMASAMI T. Some studies on recovery of chromium from chromite ore processing residues[J]. Indian Journal of Chemistry, 2003, 42A: 2447-2454.
|
[37] |
HILLIER S, LUMSDON D G, BRYDSON R, et al. Hydrogarnet: A host phase for Cr (VI) in chromite ore processing residue (COPR) and other high pH wastes[J]. Environmental Science & Technology, 2007, 41(6): 1921-1927.
|
[38] |
ZHOU X, ZHOU M, WU X, et al. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag[J]. Chemosphere, 2017, 182: 76-84. doi: 10.1016/j.chemosphere.2017.04.072
|