[1] 王浩, 陆垂裕, 秦大庸, 等. 地下水数值计算与应用研究进展综述[J]. 地学前缘, 2010, 17(6): 1 − 12.
[2] 陈晓冰, 李阳芳. 土壤水分运动方程与参数研究进展[J]. 现代农业科技, 2011(20): 265 − 268. doi: 10.3969/j.issn.1007-5739.2011.20.174.
[3] DAM J C V, FEDDES R A. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation[J]. Journal of Hydrology, 2000, 233(1/4): 72 − 85.
[4] NEGM A M, ELTARABILY M. G. A. Modeling of fertilizer transport through soil, case study: Nile Delta[M]. The Handbook of Environmental Chemistry: Springer, 2016.
[5] 徐丽萍, 张朝晖. 基于Hydrus-1D的滴灌土壤水分运移数值模拟[J]. 节水灌溉, 2019(2): 64 − 67. doi: 10.3969/j.issn.1007-4929.2019.02.012
[6] 杨洋, 李娟, 李鸣晓, 等. HYDRUS-1D软件在地下水污染源强定量评价中的应用[J]. 环境工程学报, 2014, 8(12): 5293 − 5298.
[7] 彭盼盼, 伍靖伟, 刘聪, 等. 基于数值模拟的土壤重金属铬污染预测分析[J]. 中国农村水利水电, 2016(8): 196 − 200. doi: 10.3969/j.issn.1007-2284.2016.08.044
[8] 尹芝华, 杜青青, 翟远征, 等. 利用HYDRUS-2D软件模拟污染事故后三氮污染物的迁移转化规律[J]. 环境污染与防治, 2017, 39(10): 1071 − 1076.
[9] Standard guide for application of a groundwater flow model to a site-specific problem: ASTM: D5447-04: 2010[S/OL]. [2020-05-13]. https://www.astm.org/Standards/D5447.htm.
[10] Standard guide for subsurface flow and transport modeling: ASTM D5880-95: 2006[S/OL]. [2020-05-13]. https://www.astm.org/Standards/D5880.htm.
[11] Standard guide for developing conceptual site models for contaminated sites: ASTM E1689-95: 2014[S/OL]. [2020-05-13]. https://www.astm.org/Standards/E1680.htm.
[12] Environment Agency,UK. Groundwater resources modelling: guidance notes and template project brief[S/OL]. [2020-05-26]. https://products.ihs.com/Ohsis-SEO/673275.html.
[13] National groundwater & contaminated land centre. Guide to good practice for the development of conceptual models and the selection and application of mathematical models of contaminant transport processes in the subsurface[S/OL]. [2020-05-26]. https://www.sepa.org.uk/media/147777/csm-guidance-from-ea.pdf.
[14] 林坜. 大区域地下水流模拟研究及FEFLOW的建模方法[D]. 北京: 中国地质大学(北京), 2006.
[15] Waterloo Hydrogeologic.Visual MODFLOW Flex 6.1[EB/OL].[2020-5-26]. https://www.waterloohydrogeologic.com/help/vmod-flex/.
[16] 魏亚强, 董艳辉, 李国敏. 断层对压裂液运移影响的数值模拟研究[J]. 水文地质工程地质, 2016, 43(1): 117 − 123.
[17] 陈喜, 陈洵洪. 美国Sand Hills地区地下水数值模拟及水量平衡分析[J]. 水科学进展, 2004(1): 94 − 99. doi: 10.3321/j.issn:1001-6791.2004.01.018
[18] 克热木·阿布都米吉提, 束龙仓, 鲁程鹏, 等. 某垃圾填埋场地下水污染运移预测及控制方案模拟[J]. 水电能源科学, 2018, 36(3): 46 − 49.
[19] 饶磊, 魏兴萍, 刘迅. 基于Visual Modflow的重庆某工业园区地下水污染物运移模拟[J]. 重庆师范大学学报(自然科学版), 2018, 35(5): 72 − 78.
[20] 查元源, 朱焱, 杨金忠. 基于改进积分型Richards方程的区域地下水饱和-非饱和水流耦合模型[J]. 四川大学学报(工程科学版), 2013, 45(1): 107 − 115.
[21] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质, 2003(5): 53 − 55. doi: 10.3969/j.issn.1000-3665.2003.05.012
[22] 孟宪萌. 济宁市地表河流与地下水流耦合模拟与预测模型[D]. 南京: 河海大学, 2007.
[23] 韩双平, 荆恩春, 王新忠, 等. 种植条件下土壤水与地下水相互转化研究[J]. 水文, 2005, 25(2): 9 − 14. doi: 10.3969/j.issn.1000-0852.2005.02.003
[24] 牛赟, 刘建海, 张虎, 等. 黑河中游绿洲荒漠过渡带降水-土壤水-地下水相关性分析[J]. 中南林业科技大学学报, 2016, 36(11): 59 − 64.
[25] 邓洁, 魏加华, 邵景力. 河渠与地下水相互转化耦合模型研究进展[J]. 南水北调与水利科技, 2008(2): 75 − 79. doi: 10.3969/j.issn.1672-1683.2008.02.023
[26] KEESSTRA S D, GEISSEN V, MOSSE K, et al. Soil as a filter for groundwater quality[J]. Current Opinion in Environmental Sustainability, 2012, 4(5): 507 − 516. doi: 10.1016/j.cosust.2012.10.007
[27] 曾献奎. 基于HydroGeoSphere的凌海市大、小凌河扇地地下水—地表水耦合数值模拟研究[D]. 长春: 吉林大学, 2009.
[28] ARIAS-ESTEVEZ M, LOPEZPERIAGO E, MARTINEZCARBALLO E, et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J]. Agriculture, Ecosystems & Environment, 2008, 123(4): 247 − 260.
[29] WANG S, MULLIGAN C N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J]. Environ Geochem Health, 2006, 28(3): 197 − 214. doi: 10.1007/s10653-005-9032-y
[30] HOSSAIN M M, PIANTANAKULCHAI M. Groundwater arsenic contamination risk prediction using GIS and classification tree method[J]. Engineering Geology, 2013, 156: 37 − 45. doi: 10.1016/j.enggeo.2013.01.007
[31] 贺国平, 邵景力, 崔亚莉, 等. FEFLOW在地下水流模拟方面的应用[J]. 成都理工大学学报(自然科学版), 2003(4): 356 − 361.
[32] BEEGUM S, SIMŮNEK J, SZYMKIEWICZ A, et al. Updating the coupling algorithm between HYDRUS and MODFLOW in the HYDRUS package for MODFLOW[J]. Vadose Zone Journal, 2018, 17(1): 1 − 8. doi: 10.2136/vzj2018.01.0021
[33] 张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报, 2019, 56(1): 101 − 113.
[34] BEEGUM S, SIMŮNEK J, SZYMKIEWICZ A, et al. Implementation of solute transport in the vadose zone into the "HYDRUS package for MODFLOW"[J]. Ground Water, 2019, 57(3): 392 − 408. doi: 10.1111/gwat.12815
[35] MAXWELL R M, MILLER N L. Development of a coupled land surface and groundwater model[J]. Journal of Hydrometeorology, 2005, 6(3): 233 − 247. doi: 10.1175/JHM422.1