[1] |
FEREY G, MILLANGE F, MORCRETTE M, et al. Mixed-valence Li/Fe based metal-organic frameworks with both reversible redox and sorption properties[J]. Angewandte Chemie International Edition, 2007, 46(18): 3259 − 3263. doi: 10.1002/anie.200605163
|
[2] |
CHEN W, BRUHLMANN F, RICHINS R D, et al. Engineering of improved microbes and enzymes for bioremediation[J]. Current Opinion in Biotechnology, 1999, 10(2): 137 − 141. doi: 10.1016/S0958-1669(99)80023-8
|
[3] |
赵月春, 付蓉, 莫测辉, 等. 漆酶修复土壤DDT污染的动力学研究[J]. 环境化学, 2008, 27(4): 476 − 480.
|
[4] |
张丽莉, 陈利军, 刘桂芬, 等. 污染土壤的酶学修复研究进展[J]. 应用生态学报, 2003, 14(12): 2342 − 2346.
|
[5] |
SHARMA B, DANGI A K, SHUKLA P. Contemporary enzyme based technologies for bioremediation: A review[J]. Journal of Environmental Management, 2018, 210: 10 − 22.
|
[6] |
BUDDOLLA V, BANDI R, AVILALA J, et al. Fungal laccases and their applications in bioremediation[J]. Enzyme Research, 2014, 2014: 1 − 21.
|
[7] |
丛汉卿, 徐立, 信彩云, 等. 植物漆酶的研究进展[J]. 安徽农业科学, 2009, 37(18): 8322 − 8323.
|
[8] |
CLAUS H. Laccases and their occurrence in prokaryote[J]. Archives of Microbiology, 2003, 179(3): 145 − 150. doi: 10.1007/s00203-002-0510-7
|
[9] |
邓寒梅, 邵可, 梁家豪, 等. 漆酶的来源及固定化漆酶载体研究[J]. 生物技术通报, 2017, 33(6): 10 − 15.
|
[10] |
KRAMER K J, KANOST M R, HOPKINS T L, et al. Oxidative conjugation of catechols with proteins in insect skeletal systems[J]. Tetrahedron, 2001, 57(2): 385 − 392. doi: 10.1016/S0040-4020(00)00949-2
|
[11] |
JOSEE-ANNE M, BRAR S K, TYAGI R D. Laccases for removal of recalcitrant and emerging pollutants[J]. Bioresource Technology, 2010, 101(7): 2331 − 2350. doi: 10.1016/j.biortech.2009.10.087
|
[12] |
XU G F, WANG J J, YIN Q, et al. Expression of a thermo- and alkali-philic fungal laccase in Pichia pastoris and its application[J]. Protein Expression and Purification, 2019, 154: 16 − 24. doi: 10.1016/j.pep.2018.09.015
|
[13] |
SENTHIVELAN T, KANAGARAJ J, PANDA R C. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review[J]. Biotechnology and Bioprocess Engineering, 2016, 221: 19 − 38.
|
[14] |
傅恺. 真菌漆酶高产菌株的发酵产酶及酶促降解有机染料的动力学研究[D]. 广州: 华南理工大学, 2013.
|
[15] |
WANG H X, NG T B. Purification of a laccase from fruitingbodies of the mushroom Pleurotus eryngii[J]. Applied Microbiology and Biotechnology, 2006, 69(5): 521 − 525. doi: 10.1007/s00253-005-0086-7
|
[16] |
BALDRIAN P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2): 215 − 242. doi: 10.1111/j.1574-4976.2005.00010.x
|
[17] |
GLAZUNOVA O A, POLYAKOV K M, MOISEENKO K V, et al. Structure-function study of two new middle-redox potential laccases from basidiomycetesAntrodiella faginea andSteccherinum murashkinskyi[J]. International Journal of Biological Macromolecules, 2018, 118: 406 − 418. doi: 10.1016/j.ijbiomac.2018.06.038
|
[18] |
万云洋, 杜予民. 漆酶结构与催化机理[J]. 化学通报, 2007, 70(9): 662 − 700.
|
[19] |
周攀登. 真菌漆酶在非水介质中的催化特性及其用于偶联聚合的研究[D]. 广东: 华南理工大学, 2014.
|
[20] |
DAÁSSI D, PRIETO A, ZOUARI-MECHICHI H, et al. Degradation of bisphenol A by different fungal laccases and identification of its degradation products[J]. International Biodeterioration & Biodegradation, 2016, 110: 181 − 188.
|
[21] |
GUARDADO A L P, BELLEVILLE M P, ALANIS M D J, et al. Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study[J]. Process Biochestry, 2019, 78: 123 − 131. doi: 10.1016/j.procbio.2018.12.032
|
[22] |
ASHE B, NGUYEN L N, HAI F I, et al. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: degradation efficiency, laccase stability and effluent toxicity[J]. International Biodeterioration & Biodegradation, 2016, 113: 169 − 176.
|
[23] |
MIKOLASCH A, SCHAUER F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials[J]. Applied Microbiology and Biotechnology, 2009, 82(4): 605 − 624. doi: 10.1007/s00253-009-1869-z
|
[24] |
FRASCONI M, FAVERO G, BOER H, et al. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010, 18(4): 899 − 908.
|
[25] |
SHUMAKOVICH G, KUROVA V, VASIL’ EVA I, et al. Laccase-mediated synthesis of conducting polyaniline[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 77: 105 − 110. doi: 10.1016/j.molcatb.2012.01.023
|
[26] |
FOROOTANFAR H, MOEZZI A, AGHAIE-KHOZANI M, et al. Synthetic dye decolorization by three sources of fungal laccase[J]. Iranian Journal of Environmental Health Science & Engineering, 2012, 9(27): 1 − 10.
|
[27] |
SHLEEV S V, MOROZOVA O V, NIKITINA O V, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes[J]. Biochimie (Paris), 2004, 86(9-10): 693 − 703.
|
[28] |
GARZILLO A M, COLAO M C, BUONOCORE V, et al. Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii[J]. Journal of Protein Chemistry, 2001, 20(3): 191 − 201. doi: 10.1023/A:1010954812955
|
[29] |
REINHAMMAR B R. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1972, 275(2): 245 − 59. doi: 10.1016/0005-2728(72)90045-X
|
[30] |
LI K, XU F, ERIKSSON K L. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound[J]. Applied and Environmental Microbiology, 1999, 65: 2654 − 2660. doi: 10.1128/AEM.65.6.2654-2660.1999
|
[31] |
MATE D M, GARCIA-RUIZ E, CAMARERO S, et al. Switching from blue to yellow: altering the spectral properties of a high redox potential laccase by directed evolution[J]. Biocatalysis and Biotransformation, 2013, 31(1): 8 − 21. doi: 10.3109/10242422.2012.749463
|
[32] |
SHLEEV S, NIKITINA O, CHRISTENSON A, et al. Characterization of two new multiforms of Trametes pubescens laccase[J]. Bioorganic Chemistry, 2007, 35(1): 35 − 49. doi: 10.1016/j.bioorg.2006.08.001
|
[33] |
KLONOWSKA A, GAUDIN C, FOURNEL A, et al. Characterization of a low redox potential laccase from the basidiomycete C30[J]. European Journal of Biochemistry, 2002, 269(24): 6119 − 6125. doi: 10.1046/j.1432-1033.2002.03324.x
|
[34] |
OSIPOV E, POLYAKOV K, KITTI R, et al. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties[J]. Acta Crystallographica. Section D: Biological Crystallography, 2014, 70: 2913 − 2923. doi: 10.1107/S1399004714020380
|
[35] |
XU F, BERKA R M, WAHLEITHNER J A, et al. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile[J]. Biochemical Journal, 1998, 334(1): 63 − 70. doi: 10.1042/bj3340063
|
[36] |
BONOMO R P, BOUDET A M, COZZOLINO R, et al. A comparative study of two isoforms of laccase secreted by the white-rot fungus Rigidoporus lignosus, exhibiting significant structural and functional differences[J]. Journal of Inorganic Biochemistry, 1998, 71(3−4): 205 − 211. doi: 10.1016/S0162-0134(98)10057-0
|
[37] |
SADHASIVAM S, SAVITHA S, SWAMINATHAN K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1[J]. Process Biochemistry, 2008, 43(7): 736 − 742. doi: 10.1016/j.procbio.2008.02.017
|
[38] |
SCHNEIDER K P, GEWESSLER U, FLOCK T, et al. Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase[J]. New Biotechnology, 2012, 29(4): 502 − 509. doi: 10.1016/j.nbt.2012.03.005
|
[39] |
JUNG H C, XU F, LI K C. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme and Microbial Technology, 2002, 30: 161 − 168. doi: 10.1016/S0141-0229(01)00485-9
|
[40] |
KLONOWSKA A, GAUDIN C, ASSO M, et al. LAC3, a new low redox potential laccase from Trametes sp. strain C30 obtained as a recombinant protein in yeast[J]. Enzyme and Microbial Technology, 2005, 36(1): 34 − 41. doi: 10.1016/j.enzmictec.2004.03.022
|
[41] |
MIURA Y, TSUJIMURA S, KUROSE S, et al. Direct electrochemistry of CueO and its mutants at residues to and near type I Cu for oxygenreducing biocathode[J]. Fuel Cells, 2009, 9(1): 70 − 78. doi: 10.1002/fuce.200800027
|
[42] |
ANDBERG M, HAKULINEN N, AUER S, et al. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure[J]. FEBS Journal, 2009, 276(21): 6285 − 6300. doi: 10.1111/j.1742-4658.2009.07336.x
|
[43] |
MELO E P, FERNANDES A T, DURAO P, et al. Insight into stability of CotA laccase from the spore coat of Bacillus subtilis[J]. Biochemical Society Transations, 2007, 35(6): 1579 − 1582. doi: 10.1042/BST0351579
|
[44] |
GALLAWAY J, WHEELDON I, RINCON R, et al. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor[J]. Biosensors and Bioelectronics, 2008, 23(8): 1229 − 1235. doi: 10.1016/j.bios.2007.11.004
|
[45] |
FERNANDES A T, SOARES C M, PEREIRA M M, et al. A robust metallooxidase from the hyperthermophilic bacterium Aquifex aeolicus[J]. FEBS Journal, 2007, 274(11): 2683 − 2694. doi: 10.1111/j.1742-4658.2007.05803.x
|
[46] |
GUNNE M, HÖPPNER A, HAGEDOOM P L, et al. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus[J]. FEBS Journal, 2014, 281: 4307 − 4318. doi: 10.1111/febs.12755
|
[47] |
MURUGESAN K, CHANG Y Y, KIM Y M, et al. Enhanced transformation of triclosan by laccase in the presence of redox mediators[J]. Water research, 2010, 44(1): 298 − 308. doi: 10.1016/j.watres.2009.09.058
|
[48] |
D'ACUNZO F, GALLI C, MASCI B. Oxidation of phenols by laccase and laccase-mediator systems: solubility and steric issues[J]. European Journal of Biochemistry, 2002, 269(21): 5330 − 5335. doi: 10.1046/j.1432-1033.2002.03256.x
|
[49] |
MOGHARABI M, FARAMARZI M A. Laccase and laccase-mediated systems in the synthesis of organic compounds[J]. Advanced Synthesis & Catalysis, 2014, 356(5): 897 − 927.
|
[50] |
KOLOMYTSEVA M, MYASOEDOVA N, SAMOILOV A, et al. Rapid identification of fungal laccases/oxidases with different pH-optimum[J]. Process Biochemistry, 2017, 62: 174 − 183. doi: 10.1016/j.procbio.2017.07.027
|
[51] |
LEONOWICZ A, EDGEHILI R U, BOLLAG J M. The effect of pH on the transformation of syringic and vanillic acids by the laccases of Rhizoctonia praticola and Trametes versicolor[J]. Archives of Microbiology, 1984, 137(2): 89 − 96. doi: 10.1007/BF00414446
|
[52] |
ZHAO Y C and YI X Y. Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi[J]. International Journal of Environmental Research and Public Health, 2010, 7(4): 1612 − 1621. doi: 10.3390/ijerph7041612
|
[53] |
PANDI A, KUPPUSWAMI G M, RAMUDU K N, et al. A sustainable approach for degradation of leather dyes by a new fungal laccase[J]. Journal of Cleaner Production, 2019, 211: 590 − 597. doi: 10.1016/j.jclepro.2018.11.048
|
[54] |
SHARMA V, AYOTHIRAMAN S, DHAKSHINAMOORTHY V. Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan film[J]. Journal of Bioscience and Bioengineering, 2019, 27(6): 672 − 678.
|
[55] |
SUN K, KANG F X, WAIGI M G, et al. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid[J]. Environmental Pollution, 2017, 220: 105 − 111. doi: 10.1016/j.envpol.2016.09.028
|
[56] |
ZHUO R, YUAN P, YANG Y, et al. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase[J]. Biochemical Engineering Journal, 2017, 117: 62 − 72. doi: 10.1016/j.bej.2016.09.016
|
[57] |
傅恺, 付时雨, 张丽, 等. 亚热带木腐真菌产漆酶及其酶学性质[J]. 华南理工大学学报(自然科学版), 2011, 39(9): 152 − 157.
|
[58] |
NIKU-PAAVOLA M L, VIIKARI L. Enzymatic oxidation of alkenes[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(4): 435 − 444. doi: 10.1016/S1381-1177(99)00117-4
|
[59] |
TAVARES A P M, PEREIRA S R, XAVIER A M R B. Biotechnological applications of Trametes versicolor and their enzymes[J]. Current Biotechnology, 2017, 6(2): 78 − 88. doi: 10.2174/2211550105666160510113212
|
[60] |
KEUM Y S, LI Q X. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls[J]. Chemosphere, 2004, 56(1): 23 − 30. doi: 10.1016/j.chemosphere.2004.02.028
|
[61] |
TAKAGI S, SHIROTA C, SAKAGUCHI K, et al. Exoenzymes ofTrametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB[J]. Chemosphere, 2007, 67(9): S54 − S57. doi: 10.1016/j.chemosphere.2006.05.090
|
[62] |
KORDON K, MIKOLASCH A, SCHAUER F. Oxidative dehalogenation of chlorinated hydroxybiphenyls by laccases of white-rot fungi[J]. International Biodeterioration & Biodegradation, 2010, 64(3): 203 − 209.
|
[63] |
LIU H Y, ZHANG Z X, XIE S W, et al. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking[J]. Chemosphere, 2019, 224: 743 − 750. doi: 10.1016/j.chemosphere.2019.02.143
|
[64] |
NAVADA K K, KULAL A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators[J]. International Biodeterioration & Biodegradation, 2019, 138: 63 − 69.
|
[65] |
GAITAN I J, MEDINA S C, GONZÁLEZ J C, et al. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens[J]. Bioresource Technology, 2011, 102(3): 3632 − 3635. doi: 10.1016/j.biortech.2010.11.040
|
[66] |
ZENG J, ZHU Q H, WU Y C, et al. Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence[J]. Chemosphere, 2016, 148: 1 − 7. doi: 10.1016/j.chemosphere.2016.01.019
|
[67] |
KOSCHOREECK K, RICHTER S M, SWIERCZEK A, et al. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs[J]. Archives of Biochemistry and Biophysics, 2008, 474(1): 213 − 219. doi: 10.1016/j.abb.2008.03.009
|
[68] |
KADRI T, ROUISSI T, BRAR S K, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review[J]. Journal of Environmental Sciences, 2017, 1: 52 − 74.
|
[69] |
张泽雄, 刘红艳, 邢贺, 等. 漆酶可降解底物种类的研究进展[J]. 生物技术通报, 2017, 33(10): 97 − 102.
|
[70] |
马利. 白腐真菌及其漆酶对不同结构染料的降解研究[D]. 武汉: 华中科技大学, 2013.
|
[71] |
司静, 崔宝凯, 贺帅, 等. 微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J]. 应用与环境生物学报, 2011, 17(5): 736 − 741.
|
[72] |
CAMARERO S, IBARRA D, MARTÍNEZ Á T, et al. Paper pulp delignification using laccase and natural mediators[J]. Enzyme and Microbial Technology, 2007, 40(5): 1264 − 1271. doi: 10.1016/j.enzmictec.2006.09.016
|