[1] 张红举, 陈方. 太湖流域面源污染现状及控制途径[J]. 水资源保护, 2010, 26(3): 87 − 90. doi: 10.3969/j.issn.1004-6933.2010.03.022
[2] 徐长春, 郑戈, 林友华. 国家重点研发计划“农业面源和重金属污染农田综合防治与修复技术研发”专项解析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 657 − 662.
[3] WILLIAMS A, POURKASHANIAN M, JONES J M, et al. Review of NOx formation and reduction mechanisms in combustion systems, with particular reference to coal[J]. Journal of the Institute of Energy, 1997, 70(484): 102 − 113.
[4] 孙雅丽, 郑骥, 姜冰. 燃煤电厂烟气氮氧化物排放控制技术发展现状[J]. 环境科学与技术, 2011, 34(S1): 174 − 179.
[5] 陈峻崎, 贾剑波, 朱建刚. 基于环境基准的太湖氨氮最大容量研究[J]. 生态环境学报, 2017, 26(1): 89 − 94.
[6] LIN J Y, CAO B, CUI S H, et al. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China[J]. Energy Policy, 2010, 38(9): 5123 − 5132. doi: 10.1016/j.enpol.2010.04.042
[7] 张淑丽. 水污染物排污权交易的规则与方式[D]. 北京: 北京化工大学, 2008.
[8] 刘钢, 王慧敏, 仇蕾, 等. 湖域工业初始排污权纳什议价模型研究—以江苏省太湖流域纺织行业为例[J]. 中国人口·资源与环境, 2012, 22(10): 78 − 85. doi: 10.3969/j.issn.1002-2104.2012.10.012
[9] 刘钢, 王慧敏, 仇蕾. 湖域工业初始排污权合作配置体系构建—以太湖流域为例[J]. 长江流域资源与环境, 2012, 21(10): 1223 − 1229.
[10] 董圆媛, 张涛, 顾进伟, 等. 太湖流域水污染物总量减排绩效评估体系建立[J]. 中国环境监测, 2015, 31(5): 22 − 26. doi: 10.3969/j.issn.1002-6002.2015.05.006
[11] 唐玉兰, 董旭, 李晶晶, 等. 辽河流域水污染物总量减排实施效率研究[J]. 环境科学与技术, 2016, 39(4): 168 − 173.
[12] 赵永宏, 邓祥征, 吴锋, 等. 乌梁素海流域氮磷减排与区域经济发展的均衡分析[J]. 环境科学研究, 2011, 24(1): 110 − 117.
[13] 王凤鹭, 杜慧玲, 李晶, 等. 农业面源氨氮污染减排体系的构建及减排控制对策—以黑龙江省松花江流域为例[J]. 安徽农业科学, 2016, 44(4): 77 − 79. doi: 10.3969/j.issn.0517-6611.2016.04.027
[14] KONG H, LIN H, PENG B R, et al. Modelling the cost-effective solutions of nitrogen reduction in Jiulong River Watershed, China[J]. Estuarine, Coastal and Shelf Science, 2015, 166: 218 − 229. doi: 10.1016/j.ecss.2015.03.001
[15] CHEN N W, WU J Z, ZHOU X P, et al. Riverine N2O production, emissions and export from a region dominated by agriculture in Southeast Asia (Jiulong River)[J]. Agriculture, Ecosystems & Environment, 2015, 208: 37 − 47.
[16] YAN Y Y, GUAN Q S, WANG M, et al. Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River Watershed, China[J]. Marine Pollution Bulletin, 2018, 133: 349 − 356. doi: 10.1016/j.marpolbul.2018.05.050
[17] 陈艳卿. 中国废水排放氨氮控制标准评述[J]. 环境科学与管理, 2011, 36(3): 21 − 23. doi: 10.3969/j.issn.1673-1212.2011.03.005
[18] 黄少薇, 张骥骧. 氮氧化物减排博弈行为研究[J]. 环境保护科学, 2017, 43(4): 55 − 61.
[19] 郭新帅, 缪柏其, 方世建. 排污管制中的授权监督与合谋[J]. 中国人口·资源与环境, 2009, 19(4): 24 − 29. doi: 10.3969/j.issn.1002-2104.2009.04.005
[20] LIN R-J. Using fuzzy DEMATEL to evaluate the green supply chain management practices[J]. Journal of Cleaner Production, 2013, 40: 32 − 39. doi: 10.1016/j.jclepro.2011.06.010
[21] KESKIN G A. Using integrated fuzzy DEMATEL and fuzzy C: Means algorithm for supplier evaluation and selection[J]. International Journal of Production Research, 2015, 53(12): 3586 − 3602. doi: 10.1080/00207543.2014.980461
[22] LI RJ. Fuzzy method in group decision making[J]. Computers & Mathematics with Applications, 1999, 38(1): 91 − 101.
[23] OPRICOVIC S, TZENG G-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS[J]. European Journal of Operational Research, 2004, 156(2): 44 − 455.