[1] 蒋昕楠, 孔振凯, 王际童, 等. 高锰酸钾改性球形中孔炭的甲醛吸附性能[J]. 环境工程学报, 2018, 12(6): 1676-1682. doi: 10.12030/j.cjee.201712079
[2] 钟禾. 甲醛被列为一类致癌物质[J]. 福建质量管理, 2005(2): 46-47.
[3] 雷春生, 朱晓峰. 负载铂的酸活化高岭土室温甲醛氧化性能[J]. 环境工程学报, 2016, 10(10): 5743-5748. doi: 10.12030/j.cjee.201505118
[4] BAI B Y, ARANDIYAN H, LI J H. Comparison of performance for oxidation of formaldehyde on nano-Co3O4,2D- Co3O4, and 3D- Co3O4 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142-143: 677-683. doi: 10.1016/j.apcatb.2013.05.056
[5] 崔维怡, 王成, 吴军, 等. 锰氧化物催化剂催化氧化甲醛的研究进展[J]. 精细化工, 2019, 36(12): 2353-2363.
[6] BAI B Y, QIAO Q, LI J H, et al. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, 2016, 37(1): 102-122. doi: 10.1016/S1872-2067(15)61007-5
[7] ZHANG C B, LIU F D, ZHAI Y P, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie International Edition, 2012, 51(38): 9628-9632. doi: 10.1002/anie.201202034
[8] LI G N, LI L. Highly efficient formaldehyde elimination over meso-structured M/CeO2 (M=Pd, Pt, Au and Ag) catalyst under ambient conditions[J]. RSC Advances, 2015, 5(46): 36428-36433. doi: 10.1039/C5RA04928H
[9] ZHANG C B, LI Y B, WANG Y F, et al. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature[J]. Environmental Science & Technology, 2014, 48(10): 5816-5822.
[10] TAN H Y, WANG J, YU S Z, et al. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(14): 8675-8682.
[11] YUAN E X, WU C, HOU X, et al. Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation[J]. Journal of Catalysis, 2017, 347: 79-88. doi: 10.1016/j.jcat.2017.01.003
[12] DAI C Y, LI Y G, NING C L, et al. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine[J]. Applied Catalysis A: General, 2017, 545: 97-103. doi: 10.1016/j.apcata.2017.07.032
[13] MENDEZ C M, OLIVERO H, DAMIANI D E, et al. On the role of Pd β-hydride in the reduction of nitrate over Pd based catalyst[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 156-161.
[14] BONAROWSKA M, PIELASZEK J, JUSZCZYK W, et al. Characterization of Pd-Au/SiO2 catalysts by X-ray diffraction, temperature-programmed hydride decomposition, and catalytic probes[J]. Journal of Catalysis, 2000, 195(2): 304-315. doi: 10.1006/jcat.2000.2989
[15] ZHU X, SHEN M, LOBBAN L L, et al. Structural effects of Na promotion for high water gas shift activity on Pt-Na/TiO2[J]. Journal of Catalysis, 2011, 278(1): 123-132. doi: 10.1016/j.jcat.2010.11.023
[16] LIU Q Y, BIE Y W, QIU S B, et al. Hydrogenolysis of methyl heptanoate over Co based catalysts: Mediation of support property on activity and product distribution[J]. Applied Catalysis B: Environmental, 2014, 147: 236-245. doi: 10.1016/j.apcatb.2013.08.045
[17] PAN Y M, MEI Z S, YANG Z H, et al. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes[J]. Chemical Engineering Journal, 2014, 242(2): 397-403.
[18] MA C Y, WANG D H, XUE W J, et al. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature: Effective removal and determination of reaction mechanism[J]. Environmental Science & Technology, 2011, 45(8): 3628-3634.
[19] CHEN Y N, LIU D S, YANG L J, et al. Ternary composite oxide catalysts CuO/Co3O4-CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream[J]. Chemical Engineering Journal, 2013, 234(1/2): 88-98.
[20] BUERES R F, NIETO E A, DÍAZ E, et al. Performance of carbon nanofibres, high surface area graphites, and activated carbons as supports of Pd-based hydrodechlorination catalysts[J]. Catalysis Today, 2010, 150(1/2): 16-21.
[21] NUTT M O, HECK K N, ALVAREZ P, et al. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination[J]. Applied Catalysis B: Environmental, 2006, 69(1/2): 115-125.
[22] HUANG S Y, ZHANG C B, HE H. Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature[J]. Journal of Environmental Sciences, 2013, 25(6): 1206-1212. doi: 10.1016/S1001-0742(12)60169-7
[23] HUANG H, LEUNG D Y C. Complete oxidation of formaldehyde at room temperature using TiO2-supported metallic Pd nanoparticles[J]. ACS Catalysis, 2011, 1(4): 348-354. doi: 10.1021/cs200023p
[24] LIOTTA L F, DEGANELLO G, DELICHERE P, et al. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy[J]. Journal of Catalysis, 1996, 164(2): 334-340. doi: 10.1006/jcat.1996.0389
[25] ONISHI H, ARUGA T, EGAWA C, et al. Modification of surface electronic-structure on TiO2 (110) and TiO2 (441) by Na deposition[J]. Surface Sciences, 1988, 199(1/2): 54-66.
[26] HU P P, AMGHOUZ Z, HUANG Z W, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(4): 2384-2390.
[27] DUPIN J C, GONBEAU D, VINATIER P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324. doi: 10.1039/a908800h
[28] 何德东, 张亚柳, 周元, 等. Pt/MORn-H6催化剂上甲醛室温催化氧化性能[J]. 高等化学工程学报, 2019, 33(3): 611-618.
[29] BAI B Y, LI J H. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. ACS Catalysis, 2014, 4(8): 2753-2762. doi: 10.1021/cs5006663