[1] |
CHAI H X, KANG W. Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater[J]. Applied Biochemistry and Biotechnology, 2012, 168(6): 1664-1671. doi: 10.1007/s12010-012-9887-1
|
[2] |
ZHANG L F, FU G K, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. doi: 10.1016/j.bioelechem.2018.11.002
|
[3] |
LUO H P, JENKINS P E, REN Z Y. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells[J]. Environmental Science Technology, 2011, 45(1): 340-344. doi: 10.1021/es1022202
|
[4] |
LUO H P, XU P, JENKINS P E. Ionic composition and transport mechanisms in microbial desalination cells[J]. Journal of Membrane Science, 2012, 409-410: 16-23. doi: 10.1016/j.memsci.2012.02.059
|
[5] |
MALAKOOTIAN M, MAHDIZADEH H, NASIRI A, et al. Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions[J]. Desalination, 2018, 438: 19-23. doi: 10.1016/j.desal.2018.03.025
|
[6] |
ZHANG L F, FU G K, ZHANG Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 289: 19-28.
|
[7] |
YANG E, CHAE K, CHOI M, et al. Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment[J]. Desalination, 2019, 452: 40-67. doi: 10.1016/j.desal.2018.11.007
|
[8] |
RAGAB M, ELAWWAD A, ABDEL-HALIM H. Simultaneous power generation and pollutant removals using microbial desalination cell at variable operation modes[J]. Renewable Energy, 2019, 143: 939-949. doi: 10.1016/j.renene.2019.05.068
|
[9] |
CAO X X, HUANG X, LIANG P, et al. A new method for water desalination using microbial desalination cells[J]. Environmental Science & Technology, 2009, 43(18): 7148-7152.
|
[10] |
MEHANNA M, SAITO T, YAN J L, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis[J]. Energy & Environmental Science, 2010, 3(8): 1114-1120.
|
[11] |
ZHANG H C, WEN Q X, AN Z Y, et al. Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells[J]. Environmental Science and Pollution Research, 2016, 23(6): 5931-5940. doi: 10.1007/s11356-015-5794-7
|
[12] |
WEN Q X, ZHANG H C, CHEN Z Q, et al. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination[J]. Bioresource Technology, 2012, 125: 108-113. doi: 10.1016/j.biortech.2012.08.140
|
[13] |
付国楷, 杨茜, 张林防, 等. 高盐废水MFCs不同阴极电子受体产电及微生物群落分析[J]. 环境工程学报, 2019, 13(10): 2451-2460. doi: 10.12030/j.cjee.201901111
|
[14] |
JADHVA D, GHADGE A, MONDAL D, et al. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells[J]. Bioresource Technology, 2014, 154: 330-335. doi: 10.1016/j.biortech.2013.12.069
|
[15] |
GHADGE A N, JADHAV D A, PRADHAN H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015, 182: 225-231. doi: 10.1016/j.biortech.2015.02.004
|
[16] |
付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4): 1401-1407. doi: 10.3969/j.issn.1000-6923.2017.04.026
|
[17] |
ZHANG L F, FU G K, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012
|
[18] |
OLIOT M, GALIER S, BALMANN H, et al. Ion transport in microbial fuel cells: Key roles, theory and critical review[J]. Applied Energy, 2016, 183: 1682-1704. doi: 10.1016/j.apenergy.2016.09.043
|
[19] |
SAMSON R, SHAH M, YADAV R, et al. Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges[J]. Science of the Total Environment, 2019, 674: 288-299. doi: 10.1016/j.scitotenv.2019.04.166
|
[20] |
CHEN X J, XU Y, FAN M, et al. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system[J]. Journal of Environmental Management, 2019, 235: 350-356.
|
[21] |
SUN L W, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov. sp. nov. a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov[J]. International Journal of Systematic & Evolutionary Microbiology, 2016, 66(7): 2635-2642.
|
[22] |
MENG X Y, YUAN X F, REN J W, et al. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses[J]. Bioresource Technology, 2017, 241: 1050-1059. doi: 10.1016/j.biortech.2017.05.181
|
[23] |
李坚, 汤佳, 庄莉, 等. 导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程[J]. 生态环境学报, 2018, 27(7): 76-84.
|
[24] |
LEE J, HWANG S. Single and combined inhibition of Methanosaeta concilii by ammonia, sodium ion and hydrogen sulfide[J]. Bioresource Technology, 2019, 281: 401-411. doi: 10.1016/j.biortech.2019.02.106
|
[25] |
RIMBOUND M, BARAKAT M, BERGEL A, et al. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics[J]. Bioelectrochemistry, 2017, 116: 24-32. doi: 10.1016/j.bioelechem.2017.03.001
|
[26] |
李志杰, 郭长城, 石杰, 等. 高通量测序解析多环芳烃污染盐碱土壤翅碱蓬根际微生物群落多样性[J]. 微生物学通报, 2017, 44(7): 1602-1612.
|