[1] |
JETTEN M S M, STROUS M, VAN DE PAS-SCHOONEN K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. doi: 10.1111/j.1574-6976.1998.tb00379.x
|
[2] |
MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074
|
[3] |
CAO Y S, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7
|
[4] |
唐崇俭. 厌氧氨氧化工艺特性与控制技术的研究[D]. 杭州: 浙江大学, 2011.
|
[5] |
PICOS-BENITEZ A R, LOPEZ-HINCAPIE J D, CHAVEZ-RAMIREZ A U, et al. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment[J]. Water Science and Technology, 2017, 75(6): 1351-1361. doi: 10.2166/wst.2017.005
|
[6] |
SEEBOONRUANG U. A statistical assessment of the impact of land uses on surface water quality indexes[J]. Journal of Environmental Management, 2012, 101: 134-142.
|
[7] |
蒋白懿, 牟天蔚, 王玲萍. 灰色遗传神经网络模型对居民年需水量预测[J]. 给水排水, 2018, 54(1): 137-142. doi: 10.3969/j.issn.1002-8471.2018.01.028
|
[8] |
黄辉, 马思佳, 王庆, 等. 多参数影响下污水总氮浓度预测最优方法研究[J]. 南京大学学报(自然科学), 2017, 53(6): 1194-1202.
|
[9] |
ZHANG H G, CUI L L, ZHANG X, et al. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming Method[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2226-2236. doi: 10.1109/TNN.2011.2168538
|
[10] |
ZHAO Y, GUO L, LIANG J B, et al. Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China[J]. Desalination and Water Treatment, 2016, 57(8): 3452-3465. doi: 10.1080/19443994.2014.986202
|
[11] |
YE J, ZHANG P, HOFFMANN E, et al. Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption[J]. Water, Air & Soil Pollution, 2014, 225(12): 2225.
|
[12] |
BAGHERI M, MIRBAGHERI S A, BAGHERI Z, et al. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach[J]. Process Safety and Environmental Protection, 2015, 95: 12-25. doi: 10.1016/j.psep.2015.02.008
|
[13] |
乔俊飞, 逄泽芳, 韩红桂. 基于改进粒子群算法的污水处理过程神经网络优化控制[J]. 智能系统学报, 2012, 7(5): 429-436. doi: 10.3969/j.issn.1673-4785.201205034
|
[14] |
李佟, 李军. 基于BP神经网络与马尔可夫链的污水处理厂脱氮效果模拟预测[J]. 环境科学学报, 2016, 36(2): 576-581.
|
[15] |
HU K, WAN J Q, MA Y W, et al. A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters[J]. Journal of Environmental Science and Health, 2012, 47(5): 744-754.
|
[16] |
PLAZAS-NOSSA L, HOFER T, GRUBER G, et al. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis[J]. Water Science and Technology, 2017, 75(4): 765-774. doi: 10.2166/wst.2016.524
|
[17] |
乔俊飞, 安茹, 韩红桂. 基于RBF神经网络的出水氨氮预测研究[J]. 控制工程, 2016, 23(9): 1301-1305.
|
[18] |
刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 7版. 北京: 科学出版社, 2014.
|
[19] |
DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051
|
[20] |
DECANETE J F, DEL SAZ-OROZCO P, BARATTI R, et al. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63: 8-19. doi: 10.1016/j.eswa.2016.06.028
|
[21] |
LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
|
[22] |
严聪聪, 徐凯琳, 张建昆, 等. 基于改进的粒子群算法的活性污泥神经网络控制模型[J]. 给水排水, 2018, 54(1): 130-136. doi: 10.3969/j.issn.1002-8471.2018.01.027
|
[23] |
王元月, 魏源送. 新型控制模式下短程硝化/厌氧氨氧化法处理污泥水[J]. 中国给水排水, 2013, 29(17): 24-27. doi: 10.3969/j.issn.1000-4602.2013.17.006
|