[1] |
LYU H, ZHAO H, TANG J, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182
|
[2] |
NICKENS K P, PATIERNO S R, CERYAK S. Chromium genotoxicity: A double-edged sword[J]. Chemical Biology Interact, 2010, 188(2): 276-288. doi: 10.1016/j.cbi.2010.04.018
|
[3] |
XIAO R, WANG J J, LI R H, et al. Enhanced sorption of hexavalent chromium Cr(VI) from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite[J]. Chemosphere, 2018, 208: 408-416. doi: 10.1016/j.chemosphere.2018.05.175
|
[4] |
WU B, PENG D H, HOU S Y, et al. Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron[J]. Environmental Pollution, 2018, 240: 717-724. doi: 10.1016/j.envpol.2018.04.099
|
[5] |
QIU X Q, FANG Z Q, YAN X M, et al. Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study and numerical simulation[J]. Chemical Engineering Journal, 2012, 193-194(25): 358-365.
|
[6] |
GU P, ZHANG S, LI X, et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution[J]. Environmental Pollution, 2018, 240: 493-505. doi: 10.1016/j.envpol.2018.04.136
|
[7] |
SUN J T, ZHANG Z P, JI J, et al. Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon[J]. Applied Surface Science, 2017, 405: 372-379. doi: 10.1016/j.apsusc.2017.02.044
|
[8] |
ZHANG W, ZHANG S L, WANG J, et al. Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption[J]. Chemosphere, 2018, 203: 188-198. doi: 10.1016/j.chemosphere.2018.03.188
|
[9] |
ZHU S S, HUANG X C, WANG D W, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential[J]. Chemosphere, 2018, 207: 50-59. doi: 10.1016/j.chemosphere.2018.05.046
|
[10] |
XUE W J, HUANG D L, ZENG G M, et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review[J]. Chemosphere, 2018, 210: 1145-1156. doi: 10.1016/j.chemosphere.2018.07.118
|
[11] |
XIE Y K, DONG H R, ZENG G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. doi: 10.1016/j.jhazmat.2016.09.028
|
[12] |
DONG H, DENG J, XIE Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
|
[13] |
ZHAO X, LIU W, CAI Z Q, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019
|
[14] |
AMBIKA S, NAMBI I M, SENTHILNATHAN J. Low temperature synthesis of highly stable and reusable CMC-Fe2+(-nZVI) catalyst for the elimination of organic pollutants[J]. Chemical Engineering Journal, 2016, 289: 544-553. doi: 10.1016/j.cej.2015.12.063
|
[15] |
奚旦立, 孙裕生, 刘秀英. 环境监测[M]. 北京: 高等教育出版社, 2003.
|
[16] |
ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152(1): 538-542.
|
[17] |
QIAN L B, ZHANG W Y, YAN J C, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technology, 2016, 206: 217-224. doi: 10.1016/j.biortech.2016.01.065
|
[18] |
RONGBING F, YINGPIN Y, ZHEN X, et al. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015, 138: 726-734. doi: 10.1016/j.chemosphere.2015.07.051
|
[19] |
QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environmental Pollution, 2017, 223: 153-160. doi: 10.1016/j.envpol.2016.12.077
|
[20] |
DONG H R, ZHAO F, HE Q, et al. Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions[J]. Separation & Purification Technology, 2017, 175: 376-383.
|
[21] |
QIAN L B, CHEN B L. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768.
|
[22] |
YAN J, HAN L, GAO W, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103
|
[23] |
刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报, 2016, 10(8): 4118-4124. doi: 10.12030/j.cjee.201601146
|
[24] |
WANG T, JIN X Y, CHEN Z L, et al. Greensynthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466-467: 210-213. doi: 10.1016/j.scitotenv.2013.07.022
|
[25] |
SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072
|
[26] |
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(VI) 的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
|
[27] |
WANG Y, HONG C S. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions[J]. Water Research, 1999, 33(9): 2031-2036. doi: 10.1016/S0043-1354(98)00436-9
|
[28] |
GUO N, LIANG Y M, LAN S, et al. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol[J]. Applied Surface Science, 2014, 305(12): 562-574.
|
[29] |
ZAHEER K, THABAITI A L, SHAEEL A, et al. Nanoscale water soluble self-assembled zero-valent iron: Role of stabilizers in their morphology[J]. Research Advances, 2016, 9(6): 7267-7278.
|
[30] |
JANG I, YOU K E, KIM Y C, et al. Surfactant-assisted preparation of core-shell-type TiO2-Fe2O3 composites and their photocatalytic activities under room light irradiation[J]. Applied Surface Science, 2014, 316: 187-193. doi: 10.1016/j.apsusc.2014.07.204
|
[31] |
LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058
|
[32] |
LI M, LIU Q, GUO L J, et al. Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar[J]. Bioresource Technology, 2013, 141: 83-88. doi: 10.1016/j.biortech.2012.12.096
|