[1] 王万福, 金浩, 石丰, 等. 含油污泥热解技术[J]. 石油与天然气化工, 2010, 39(2): 173-177. doi: 10.3969/j.issn.1007-3426.2010.02.024
[2] 周浩, 汪根宝, 李蒙, 等. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
[3] MELE A R, CIBRIAN N M, SABATE M C, et al. Oil pollution in soils and sediments from the Northern Peruvian Amazon[J]. Science of the Total Environment, 2018, 610-611: 1010-1019. doi: 10.1016/j.scitotenv.2017.07.208
[4] 张新建, 王茂仁. 浅谈石油烃污染土壤间接热脱附修复技术[J]. 化工管理, 2018, 485(14): 113-114. doi: 10.3969/j.issn.1008-4800.2018.14.089
[5] 周东美, 郝秀珍, 薛艳, 等. 污染土壤的修复技术研究进展[J]. 生态环境学报, 2004, 13(2): 234-242. doi: 10.3969/j.issn.1674-5906.2004.02.028
[6] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024.
[7] 杨振, 靳青青, 衣桂米, 等. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091.
[8] LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science&Technology, 2018, 52: 5330-5338. doi: 10.1021/acs.est.7b03899
[9] MECHATI F, ROTH E, RENAULT V, et al. Pilot scale and theoretical study of thermal remediation of soils[J]. Environmental Engineering Science, 2004, 21: 361-370. doi: 10.1089/109287504323067003
[10] 刘凯, 张瑞环, 王世杰. 污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱, 2017(12): 31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013
[11] 张攀, 高彦征, 孔火良. 污染土壤中硝基苯热脱附研究[J]. 土壤, 2012, 44(5): 801-806. doi: 10.3969/j.issn.0253-9829.2012.05.015
[12] BEATTIE S D, LANGMI H W, MCGRADY G S. In situ thermal desorption of H2 from LiNH2-2LiH monitored by environmental SEM[J]. International Journal of Hydrogen Energy, 2009, 34(1): 376-379. doi: 10.1016/j.ijhydene.2008.10.062
[13] LIANG H C, UDELL K S. Experimental and theoretical investigation of vaporization of liquid hydrocarbon mixtures in water-wetted porous media[J]. Water Resources Research, 1999, 35(3): 635-649. doi: 10.1029/1998WR900098
[14] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Soil texture affects adsorption capacity and removal efficiency of contaminants in ex situ remediation by thermal desorption of diesel-contaminated soils[J]. Chemistry & Ecology, 2011, 27(1): 119-130.
[15] PARK C M, KATZ L E, LILJESTRAND H M. Mercury speciation during in situ thermal desorption in soil[J]. Journal of Hazardous Materials, 2015, 300: 624-632. doi: 10.1016/j.jhazmat.2015.07.076
[16] 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000.
[17] 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186.
[18] BAKER R S, LACHANCE J C. In situ thermal remediation of contaminated sites: A technique for the remediation source zones[R]. Fitchburg: Terra Therm Incorporation, 2006.
[19] 刘昊, 张峰, 马烈. 有机污染场地原位热修复: 技术与应用[J]. 环境工程设计, 2017(8): 93-98.
[20] 赵永建, 李贺, 周丹华, 等. 红外法测定含油土壤(污泥)中石油类的研究[J]. 江西化工, 2017(2): 38-39. doi: 10.3969/j.issn.1008-3103.2017.02.011
[21] 王嫣云, 冯真, 周泽军, 等. 油污染场地土壤热解终温试验研究[J]. 安全与环境学报, 2017, 17(6): 2287-2291.
[22] LUNDIN L, AURELL J, MARKLUND S. The behavior of PCDD and PCDF during thermal treatment of waste incineration ash[J]. Chemosphere, 2011, 84(3): 305-310. doi: 10.1016/j.chemosphere.2011.04.014
[23] 王瑛, 李扬, 黄启飞, 等. 温度和停留时间对DDT 污染土壤热脱附效果的影响[J]. 环境工程, 2012, 30(1): 116-120.
[24] LAM S S, RUSSELL A D, LEE C L, et al. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil[J]. Fuel, 2012, 92(1): 327-339. doi: 10.1016/j.fuel.2011.07.027
[25] ARESTA M, DIBENEDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6): 1052-1058. doi: 10.1016/j.chemosphere.2007.07.074
[26] 王瑛, 李扬, 黄启飞, 等. 污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究, 2011, 24(9): 1016-1022.
[27] 贺晓珍, 周友亚, 汪莉, 等. 土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J]. 环境工程学报, 2008, 2(5): 679-683.
[28] 孙磊, 蒋新, 周健民, 等. 五氯酚污染土壤的热修复初探[J]. 土壤学报, 2004, 41(3): 462-465. doi: 10.3321/j.issn:0564-3929.2004.03.021
[29] ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079