[1] JUNG S C, PARK Y K, PARK H R, et al. Catalytic performance of supported Pd catalyst prepared with different palladium precursors for catalytic combustion of BTH[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(2): 1208-1212. doi: 10.1166/jnn.2019.15950
[2] LAO Y J, ZHU N X, JIANG X X, et al. Effect of Ru on the activity of Co3O4 catalysts for chlorinated aromatics oxidation[J]. Catalysis Science & Technology, 2018, 8(18): 4797-4811.
[3] LIU G Z, TIAN Y J, ZHANG B F, et al. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. Journal of Hazardous Materials, 2019, 367: 568-576. doi: 10.1016/j.jhazmat.2019.01.014
[4] ZHANG W P, LI G Y, LIU H L, et al. Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism[J]. Environmental Science: Nano, 2019, 6(3): 948-958. doi: 10.1039/C8EN01375F
[5] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B: Environmental, 2010, 98(3/4): 180-185.
[6] SUN Y G, LI N, XING X, et al. Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides[J]. Catalysis Today, 2019, 327: 389-397. doi: 10.1016/j.cattod.2018.03.002
[7] BAI G M, DAI H X, DENG J G, et al. Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2013, 450: 42-49. doi: 10.1016/j.apcata.2012.09.054
[8] DE RIVAS B, SAMPEDRO C, RAMOS-FERNANDEZ E V, et al. Influence of the synthesis route on the catalytic oxidation of 1,2-dichloroethane over CeO2/H-ZSM5 catalysts[J]. Applied Catalysis A: General, 2013, 456: 96-104. doi: 10.1016/j.apcata.2013.02.026
[9] FEI Z Y, LU P, FENG X Z, et al. Geometrical effect of CuO nanostructures on catalytic benzene combustion[J]. Catalysis Science & Technology, 2012, 2(8): 1705-1710.
[10] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835. doi: 10.1016/j.apcatb.2017.11.036
[11] PIUMETTI M, FINO D, RUSSO N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2015, 163: 277-287. doi: 10.1016/j.apcatb.2014.08.012
[12] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs): A review[J]. Atmospheric Environment, 2016, 140: 117-134. doi: 10.1016/j.atmosenv.2016.05.031
[13] SANTOS V P, PEREIRA M F R, ORFAO J J M, et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 353-363.
[14] HOU J T, LI Y Z, LIU L L, et al. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods[J]. Journal of Materials Chemistry A, 2013, 23(1): 6736-6741. doi: 10.1039/c3ta11566f
[15] WANG J L, LI J E, JIANG C J, et al. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Applied Catalysis B: Environmental, 2017, 204: 147-155. doi: 10.1016/j.apcatb.2016.11.036
[16] CHEN J, CHEN X, XU Z, et al. Syntheses of hierarchical MnO2 via H2O2 selectively reducing KMnO4 for catalytic combustion of toluene[J]. Chemistry Select, 2016, 13(1): 4052-4056.
[17] BALDI M, ESCRIBANO V S, AMORES J M G, et al. Characterization of manganese and iron oxides as combustion catalysts for propane and propene[J]. Applied Catalysis B: Environmental, 1998, 17(3): 175-182. doi: 10.1016/S0926-3373(98)00013-7
[18] MORALES M R, BARBERO B P, CADUS L E. Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2007, 74(1/2): 1-10.
[19] DURAN F G, BARBERO B P, CADUS L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 194-201.
[20] ARENA F, TRUNFIO G, NEGRO J, et al. Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route[J]. Chemistry of Materials, 2007, 19(9): 2269-2276. doi: 10.1021/cm070198n
[21] ARENA F, TRUNFIO G, NEGRO J, et al. Synthesis of highly dispersed MnCeOx catalysts via a novel “redox-precipitation” route[J]. Materials Research Bulletin, 2008, 43(3): 539-545. doi: 10.1016/j.materresbull.2007.05.007
[22] WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2009, 86(3/4): 166-175. doi: 10.1016/j.apcatb.2008.08.009
[23] DAI Q G, WANG X Y, LU G Z. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2008, 81(3/4): 192-202.