[1] GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1/2): 47-57.
[2] LIU W, YANG Y S, LI P J, et al. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices[J]. Journal of Hazardous Materials, 2009, 161(2/3): 878-883.
[3] HUANG B, Li Z, HUANG J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science & Pollution Research, 2015, 22(15): 11467-11477.
[4] ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2/3/4): 121-142.
[5] GUO G, ZHOU Q, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3): 513-528.
[6] BIAN R, JOSEPH S, CUI L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128. doi: 10.1016/j.jhazmat.2014.03.017
[7] XU N, TAN G, WANG H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. doi: 10.1016/j.ejsobi.2016.02.004
[8] XU Y, FANG Z, TSANG E P. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles[J]. Environmental Science and Pollution Research, 2016, 23(19): 19164-19172. doi: 10.1007/s11356-016-7117-z
[9] HUANG M, ZHU Y, LI Z, et al. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies[J]. Water, Air & Soil Pollution, 2016, 227(10): 359-377.
[10] ZHOU T, WU L, LUO Y, et al. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils[J]. Environmental Pollution, 2017, 232: 1-9.
[11] ANDRE V Z, COMANS R N J. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure[J]. Environmental Science and Technology, 2007, 41(19): 6755-6761. doi: 10.1021/es0709223
[12] HORI M, SHOZUGAWA K, MATSUO M. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis[J]. Journal of Hazardous Materials, 2015, 285: 140-147.
[13] JANOS P, VACLAV H, PETRA B, et al. Reduction and immobilization of hexavalent chromium with coal-and humate-based sorbents[J]. Chemosphere, 2009, 75(6): 732-738.
[14] YAN M, MA J, JI G, et al. Examination of effects of Cu(II) and Cr(III) on Al(III) binding by dissolved organic matter using absorbance spectroscopy[J]. Water Research, 2016, 93: 84-90. doi: 10.1016/j.watres.2016.02.017
[15] CHEN J H, LIU Q L, HU S R, et al. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent[J]. Chemical Engineering Journal, 2011, 173(2): 511-519. doi: 10.1016/j.cej.2011.08.023
[16] 王文成. 含铁矿物还原特性及强化土壤修复研究 [D]. 上海: 同济大学, 2008.
[17] STAHL R S, JAMES B R. Zinc sorption by iron-oxide-coated sand as a function of pH[J]. Soil Science Society of America Journal, 1991, 55(5): 1287. doi: 10.2136/sssaj1991.03615995005500050015x
[18] PALLO F. Evolution of organic matter in some soils under shifting cultivation practices in Burkina Faso[M]//MULONGOY K, MERCKX R. Soil Organic Matter Dynamics and the Sustainability of Tropical Agriculture. John Wiley and Sons, 1993: 109-120.
[19] 李丽明, 丁玲, 姚琨, 等. 胡敏素钝化修复重金属Cu(Ⅱ)、Pb(Ⅱ)污染土壤[J]. 环境工程学报, 2016, 10(6): 3276-3280.
[20] 王雅辉. 胡敏素对土壤中Cu、Pb的钝化作用研究[D]. 广州: 广东工业大学, 2017.
[21] GARDI C. Land use, agronomic management and water quality in a small Northern Italian watershed[J]. Agriculture Ecosystems & Environment, 2001, 87(1): 1-12.
[22] ANDRE H R, OLIVERIRA L C D, IRAMAIA C B, et al. Influence of alkaline extraction on the characteristics of humic substances in Brazilian soils[J]. Thermochimica Acta, 2005, 433(1): 77-82.
[23] MULVANEY P, COOOPER R, GRIESER F, et al. Charge trapping in the reductive dissolution of colloidal suspensions of iron(III) oxides[J]. Langmuir, 1988, 4(5): 1206-1211. doi: 10.1021/la00083a028
[24] LINDSAY E L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42: 421-428. doi: 10.2136/sssaj1978.03615995004200030009x
[25] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particular trace elements[J]. Environmental Technology, 1979, 51: 844-851.
[26] CORNELL R M. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Second Edition[M]. Weinheim: Wiley-VCH, 2004.
[27] NAIDU R, BOLAN N S, KOOKANA R S, et al. Ionic﹕Strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. European Journal of Soil Science, 2006, 45(4): 419-429.
[28] QUEROL X, ANDRES A, NATALIA M, et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[J]. Chemosphere, 2006, 62(2): 171-180. doi: 10.1016/j.chemosphere.2005.05.029
[29] JAFARNEJADI A R, SAYYAD G, HOMAEE M, et al. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation and soil characteristics[J]. Environmental Monitoring and Assessment, 2013, 185(5): 4087-4096. doi: 10.1007/s10661-012-2851-2
[30] CUI L, PAN G, LI L, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering, 2016, 93: 1-8. doi: 10.1016/j.ecoleng.2016.05.007
[31] CHEN Z S, LEE G J, LIU J C. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J]. Chemosphere, 2000, 41(1): 235-242.
[32] LIU L J, DONG Y H, LIU Y, et al. Effects of various amendments on the fractions of cadmium in a polluted soil[J]. Journal of Agro-Environment Science, 2013, 32(9): 1778-1785.