[1] ZHAO W T, SUI Q, HUANG X. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment[J]. Science of the Total Environment, 2018, 635: 716-724. doi: 10.1016/j.scitotenv.2018.04.162
[2] 朱佳迪, 李菲菲, 陈吕军. AnMBR/A/OMBR处理焦化废水的运行条件优化与运行效果[J]. 环境工程学报, 2017, 11(7): 4043-4050.
[3] JIN X W, LI E C, LU S G, et al. Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574. doi: 10.1016/S1001-0742(12)60212-5
[4] 穆明明, 左青. 全膜法在焦化废水回用的应用[J]. 工业水处理, 2015, 35(1): 97-100.
[5] LI E C, LU S G. Denitrification processes and microbial communities in a sequencing batch reactor treating nanofiltration (NF) concentrate from coking wastewater[J]. Water Science and Technology, 2017, 76(12): 3289-3298. doi: 10.2166/wst.2017.493
[6] SILVA L C F, LIMA H S, SARTORATTO A, et al. Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system[J]. International Biodeterioration and Biodegradation, 2018, 130: 1-7. doi: 10.1016/j.ibiod.2018.03.009
[7] LI J, QI P, LI R G, et al. Carbon and nitrogen removal through " Candidatus Brocadia sinica”-dominated simultaneous anammox and denitrification (SAD) process treating saline wastewater[J]. Biochemical Engineering Journal, 2018, 140: 72-76. doi: 10.1016/j.bej.2018.09.009
[8] OSAKA T, SHIROTANI K, YOSHIE S, et al. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process[J]. Water Research, 2008, 42(14): 3709-3718. doi: 10.1016/j.watres.2008.06.007
[9] YOSHIE S, OGAWA T, MAKINO H, et al. Characteristics of bacteria showing high denitrification activity in saline wastewater[J]. Letters in Applied Microbiology, 2010, 42(3): 277-283.
[10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[11] 薛晖军, 岳秀萍, 王孝维. 焦化废水特征有机污染物反硝化降解速率特征分析[J]. 环境工程学报, 2014, 8(11): 4619-4624.
[12] 张玉莹, 陈秀荣, 王璐, 等. 煤制气废水总酚负荷对反硝化的抑制效应研究[J]. 环境科学, 2016, 37(3): 1055-1060.
[13] 蒙小俊, 李海波, 曹宏斌, 等. 焦化废水活性污泥细菌菌群结构分析[J]. 环境科学, 2016, 37(10): 3923-3930.
[14] QIAO M, QU Y Y, SHEN W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443. doi: 10.1016/j.biortech.2014.12.041
[15] LORENZO C C, SIPKEMA D, DÍAZ R M, et al. Microbial community dynamics in a submerged fixed bed bioreactor during biological treatment of saline urban wastewater[J]. Ecological Engineering, 2014, 71: 126-132. doi: 10.1016/j.ecoleng.2014.07.025
[16] ZHU S M, DENG Y L, RUAN Y J, et al. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment[J]. Bioresource Technology, 2015, 192: 603-610. doi: 10.1016/j.biortech.2015.06.021
[17] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
[18] LIAO R H, SHEN K, LI A M, et al. High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis[J]. Bioresource Technology, 2013, 134(4): 190-197.
[19] JENA J, KUMAR R, SAIFUDDIN M, et al. Anoxic-aerobic SBR system for nitrate, phosphate and COD removal from high-strength wastewater and diversity study of microbial communities[J]. Biochemical Engineering Journal, 2016, 105: 80-89. doi: 10.1016/j.bej.2015.09.007
[20] ZHANG Y, LI B, XU R X, et al. Effects of pressurized aeration on organic degradation efficiency and bacterial community structure of activated sludge treating saline wastewater[J]. Bioresource Technology, 2016, 222: 182-189. doi: 10.1016/j.biortech.2016.10.005
[21] O'REILLY S S, PENTLAVALLI P, FLANAGAN P V, et al. Abundance and diversity of sedimentary bacterial communities in a coastal productive setting in the Western Irish Sea[J]. Continental Shelf Research, 2016, 113: 1-9. doi: 10.1016/j.csr.2015.12.002
[22] SUN Y, SHEN Y X, LIANG P, et al. Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment[J]. Water Research, 2014, 56(3): 162-171.
[23] KANDELER E, DEIGLMAYR K, TSCHERKO D, et al. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland[J]. Applied and Environmental Microbiology, 2006, 72(9): 5957-5962. doi: 10.1128/AEM.00439-06
[24] SHU D T, HE Y L, YUE H, et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 290: 21-30. doi: 10.1016/j.cej.2016.01.024
[25] JONES C M, HALLIN S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities[J]. ISME Journal, 2010, 4(5): 633-641. doi: 10.1038/ismej.2009.152
[26] OTTE S, GROBBEN N G, ROBERTSON L A, et al. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions[J]. Applied and Environmental Microbiology, 1996, 62(7): 2421-2426.