[1] SOARES A, VEESAM M, SIMOES F, et al. Bio-struvite: A new route to recover phosphorus from wastewater[J]. Clean-Soil, Air, Water, 2014, 42(7): 994-997. doi: 10.1002/clen.v42.7
[2] DESMIDT E, GHYSELBRECHT K, ZHANG Y, et al. Global phosphorus scarcity and full-scale P-recovery techniques: A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 45(4): 336-384.
[3] KRINOVICL E, LEICHTFUSS A R, NAVIZAGA C, et al. Spectroscopic and microscopic identification of the reaction products and intermediates during the struvite (MgNH4PO4·6H2O) formation from magnesium oxide (MgO) and magnesium carbonate (MgCO3) microparticles[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1567-1577.
[4] RAHMAN M M, SALLEH M A M, RASHID U, et al. Production of slow release crystal fertilizer from wastewaters through struvite crystallization: A review[J]. Arabian Journal of Chemistry, 2014, 7(1): 139-155. doi: 10.1016/j.arabjc.2013.10.007
[5] TAO W, FATTAH K P, HUCHZERMEIER M P. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances[J]. Journal of Environmental Management, 2016, 169: 46-57.
[6] 林木兰, 游俊仁, 汪惠阳. 鸟粪石法回收废水中磷的反应器研究现状[J]. 化学工程与装备, 2010(8): 151-155.
[7] 李咏梅, 平倩, 马璐艳. 鸟粪石成粒法回收污泥液中的磷及颗粒品质表征[J]. 同济大学学报(自然科学版), 2014, 42(6): 912-917.
[8] 邓玉君, 叶志隆, 叶欣, 等. 流化床造粒法回收猪场废水中氮磷: 鸟粪石颗粒的形貌与组成[J]. 环境工程学报, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
[9] ADNAN A, MAVINIC D S, KOCH F A, et al. Pilot-scale study of phosphorus recovery through struvite crystallization: Examining the process feasibility[J]. Journal of Environmental Engineering and Science, 2003, 2(5): 315-324. doi: 10.1139/s03-040
[10] YE X, YE Z L, LOU Y, et al. A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater[J]. Powder Technology, 2016, 295: 16-26. doi: 10.1016/j.powtec.2016.03.022
[11] FATTAH K P, MAVINIC D S, KOCH F A, et al. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant[J]. Journal of Environmental Science and Health, 2008, 43(7): 756-764. doi: 10.1080/10934520801960052
[12] BRITTON A, KOCH F A, MAVINIC D S, et al. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant[J]. Journal of Environmental Engineering and Science, 2005, 4(4): 265-277. doi: 10.1139/s04-059
[13] BHUIYAN M I, MAVINIC D S, KOCH F A. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: A sustainable approach[J]. Water Science Technology, 2008, 57(2): 175-181. doi: 10.2166/wst.2008.002
[14] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Struvite crystallisation and recovery using a stainless steel structure as a seed material[J]. Water Research, 2007, 41(11): 2449-2456. doi: 10.1016/j.watres.2007.03.002
[15] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Agglomeration of struvite crystals[J]. Water Research, 2007, 41(2): 419-425. doi: 10.1016/j.watres.2006.10.025
[16] YE X, CHU D, LOU Y, et al. Numerical simulation of flow hydrodynamics of struvite pellets in a liquid-solid fluidized bed[J]. Journal of Environmental Sciences, 2017, 57(7): 391-401.
[17] WANG J, YE X, ZHANG Z, et al. Selection of cost-effective magnesium sources for fluidized struvite crystallization[J]. Journal Environmental Sciences, 2018, 70: 144-153. doi: 10.1016/j.jes.2017.11.029
[18] FATTAH K P, MAVINIC D S, KOCH F A. Influence of process parameters on the characteristics of struvite pellets[J]. Journal of Environmental Engineering, 2012, 138(12): 1200-1209. doi: 10.1061/(ASCE)EE.1943-7870.0000576