[1] |
RUBIO J, SOUZA M L, SMITH R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. doi: 10.1016/S0892-6875(01)00216-3
|
[2] |
RODRIGUES R T, RUBIO J. DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry[J]. International Journal of Mineral Processing, 2007, 82(1): 1-13. doi: 10.1016/j.minpro.2006.07.019
|
[3] |
LEE B H, SONG W C, MANNA B, et al. Dissolved ozone flotation (DOF): A promising technology in municipal wastewater treatment[J]. Desalination, 2008, 225(1): 260-273.
|
[4] |
WILINSKI P, NAUMCZKY J. Dissolved ozone flotation as an innovative and prospect method for treatment of micropollutants and wastewater treatment costs reduction[EB/OL]. [2018-12-10]. https://hal-enpc.archives-ouvertes.fr/file/index/docid/709736/filename/06-WWW-YES-2012-Wilinski-Paper-DT-2012-06-12.pdf.
|
[5] |
GRAHAM J L, STRIEBICH R, PATTERSON C L, et al. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation[J]. Chemosphere, 2004, 54(7): 1011-1016. doi: 10.1016/j.chemosphere.2003.09.017
|
[6] |
JOHN D E, HASS C N, NWACHUKU N, et al. Chlorine and ozone disinfection of Encephalitozoon intestinalis spores[J]. Water Research, 2005, 39(11): 2369-2375. doi: 10.1016/j.watres.2005.04.013
|
[7] |
SELCUK H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes[J]. Dyes & Pigments, 2005, 64(3): 217-222.
|
[8] |
SHU H Y, CHANG M C. Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes[J]. Dyes & Pigments, 2005, 65(1): 25-31.
|
[9] |
JIN P K, WANG X C, HU G. A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment[J]. Water Science & Technology, 2006, 53(9): 151-157.
|
[10] |
OLIVEIRA C, RODRIGUES R T, RUBIO J. Operating parameters affecting the formation of kaolin aerated flocs in water and wastewater treatment[J]. Clean-Soil Air Water, 2014, 42(7): 909-916. doi: 10.1002/clen.v42.7
|
[11] |
OLIVEIRA C, RODRIGUES R T, RUBIO J. A new technique for characterizing aerated flocs in a flocculation-microbubble flotation system[J]. International Journal of Mineral Processing, 2010, 96(1): 36-44.
|
[12] |
REAY D, RATCLIFF G A. Removal of fine particles from water by dispersed air flotation: Effects of bubble size and particle size on collection efficiency[J]. Canadian Journal of Chemical Engineering, 1973, 51(2): 178-185. doi: 10.1002/cjce.v51:2
|
[13] |
CALGAROTO S, AZEVEDO A, RUBIO J. Separation of amine-insoluble species by flotation with nano and microbubbles[J]. Minerals Engineering, 2016, 89: 24-29. doi: 10.1016/j.mineng.2016.01.006
|
[14] |
AZEVEDO A, ETCHEPARE R, RUBIO J. Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump[J]. Water Science & Technology, 2017, 75(10): 2342-2349.
|
[15] |
OLIVEIRA C, RUBIO J. Zeta potential of single and polymer-coated microbubbles using an adapted microelectrophoresis technique[J]. International Journal of Mineral Processing, 2011, 98(1/2): 118-123.
|
[16] |
HENDERSON R K, PARSONS S A, JEFFERSON B. Surfactants as bubble surface modifiers in the flotation of algae: Dissolved air flotation that utilizes a chemically modified bubble surface[J]. Environmental Science & Technology, 2008, 42(13): 4883-4888.
|
[17] |
YAP R K L, WHITTAKER M, DIAO M, et al. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation[J]. Water Research, 2014, 61(18): 253-262.
|
[18] |
HENDERSON R, PARSON S, JEFFERSON B. The potential for using bubble modification chemicals in dissolved air flotation for algae removal[J]. Separation Science & Technology, 2009, 44(9): 1923-1940.
|
[19] |
ARABLOO M, SHAHRI M P. Effect of surfactant and polymer on the characteristics of aphron-containing fluids[J]. Canadian Journal of Chemical Engineering, 2016, 94(6): 1197-1201. doi: 10.1002/cjce.v94.6
|
[20] |
PASDAR M, KAZEMZADEH E, KAMARI E, et al. Monitoring the role of polymer and surfactant concentrations on bubble size distribution in colloidal gas aphron based fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556: 93-98.
|
[21] |
RAO N R H, GRANVILLE A M, BROWNE C I, et al. Determining how polymer-bubble interactions impact algal separation using the novel " posi”-dissolved air flotation process[J]. Separation & Purification Technology, 2018, 201: 139-147.
|
[22] |
RAO N R H, YAP R, WHITTAKER M, et al. The role of algal organic matter in the separation of algae and cyanobacteria using the novel " posi”-dissolved air flotation process[J]. Water Research, 2017, 130: 20-30.
|
[23] |
GHANNAM M T. Wetting behavior of aqueous solutions of polyacrylamide over polyethylene substrat[J]. Journal of Chemical & Engineering Data, 2002, 47(2): 274-277.
|
[24] |
GRAY S R, HARBOUR P J, DIXON D R. Effect of polyelectrolyte charge density and molecular weight on the flotation of oil in water emulsions[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 1997, 126(2/3): 85-95.
|
[25] |
SHI Y, YANG J, MA J, et al. Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation[J]. Frontiers of Environmental Science & Engineering, 2017, 11(6): 1-10.
|
[26] |
JAMESON G J. Hydrophobicity and floc density in induced-air flotation for water treatment[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 1999, 151(1/2): 269-281.
|
[27] |
WANG Y H, ZHUO S G, LI N, et al. Influences of various aluminum coagulants on algae floc structure, strength and flotation effect[J]. Procedia Environmental Sciences, 2011, 8(1): 75-80.
|
[28] |
JIN X, JIN P K, HOU R, et al. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant[J]. Journal of Hazardous Materials, 2017, 327: 216-224. doi: 10.1016/j.jhazmat.2016.12.043
|
[29] |
JIN X, JIN P K, WANG X C. A study on the effects of ozone dosage on dissolved-ozone flotation (DOF) process performance[J]. Water Science & Technology, 2015, 71(9): 1423-1428.
|
[30] |
王晓昌, 金鹏康. 腐殖酸铝盐絮凝体的动态特性[J]. 环境科学, 2002, 23(4): 71-75. doi: 10.3321/j.issn:0250-3301.2002.04.015
|
[31] |
OLIVEIRA C, RUBIO J. Kaolin aerated flocs formation assisted by polymer-coated microbubbles[J]. International Journal of Mineral Processing, 2011, 93(2): 31-36.
|
[32] |
LI C, XING Y, GUI X, et al. Enhancement of oxidized coal flotation by pre-conditioning with positive charged microbubbles[J]. International Journal of Coal Preparation & Utilization, 2017, 11(2): 1-11.
|
[33] |
王晓昌, 丹保宪仁. 絮凝体形态学和密度的探讨(Ⅰ):从絮凝体分形构造谈起[J]. 环境科学学报, 2000, 20(3): 257-262. doi: 10.3321/j.issn:0253-2468.2000.03.001
|
[34] |
王晓昌, 丹保宪仁. 絮凝体形态学和密度的探讨(Ⅱ):致密型絮凝体形成操作模式[J]. 环境科学学报, 2000, 20(4): 385-390. doi: 10.3321/j.issn:0253-2468.2000.04.001
|
[35] |
MULLENEERS H A E, KOOPAL L K, BRUNING H, et al. Selective separation of fine particles by a new flotation approach[J]. Separation Science and Technology, 2002, 37(9): 2097-2112. doi: 10.1081/SS-120003503
|