[1] |
LI K, LIU R H, SUN C. A review of methane production from agricultural residues in China[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 857-865. doi: 10.1016/j.rser.2015.10.103
|
[2] |
温博婷. 木质纤维素原料的酶解糖化及厌氧发酵转化机理研究[D]. 北京: 中国农业大学, 2015.
|
[3] |
MUSSOLINE W, ESPOSITO G, GIORDANO A, et al. The anaerobic digestion of rice straw: A review[J]. Critical Reviews in Environmental Science & Technology, 2013, 43(9): 895-915.
|
[4] |
MONLAU F, SAMBUSITI C, BARAKAT A, et al. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials[J]. Environmental Science & Technology, 2012, 46(21): 12217-12225.
|
[5] |
KIM I J, JUNG J Y, LEE H J, et al. Customized optimization of cellulase mixtures for differently pretreated rice straw[J]. Bioprocess and Biosystems Engineering, 2015, 38(5): 929-937. doi: 10.1007/s00449-014-1338-7
|
[6] |
LI M, SI S L, HAO B, et al. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus[J]. Bioresource Technology, 2014, 169: 447-454. doi: 10.1016/j.biortech.2014.07.017
|
[7] |
ZHANG H B, ZHANG P Y, YE J, et al. Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study[J]. International Biodeterioration & Biodegradation, 2016, 113: 9-16.
|
[8] |
SHI J, XU F Q, WANG Z J, et al. Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover[J]. Bioresource Technology, 2014, 157: 188-196. doi: 10.1016/j.biortech.2014.01.089
|
[9] |
HU Z H, Yu H Q. Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover[J]. Process Biochemistry, 2005, 40(7): 2371-2377. doi: 10.1016/j.procbio.2004.09.021
|
[10] |
DAI X, TIAN Y, LI J T, et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen[J]. Applied and Environmental Microbiology, 2015, 81(4): 1375-1386. doi: 10.1128/AEM.03682-14
|
[11] |
DENG Y Y, HUANG Z X, ZHAO M X, et al. Effects of co-inoculating rice straw with ruminal microbiota and anaerobic sludge: Digestion performance and spatial distribution of microbial communities[J]. Applied Microbiology and Biotechnology, 2017, 101(14): 5937-5948. doi: 10.1007/s00253-017-8332-3
|
[12] |
APHA, AWWA, WEF. Standard methods for the examination of water & wastewater: 21st Edition[S]. Washington D C: American Public Health Association, 2005.
|
[13] |
HALL N G, SCHONFELDT H C. Total nitrogen vs amino-acid profile as indicator of protein content of beef[J]. Food Chemistry, 2013, 140(3): 608-612. doi: 10.1016/j.foodchem.2012.08.046
|
[14] |
EL ACHKAR J H, LENDORMI T, HOBAIKA Z, et al. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters[J]. Waste Management, 2016, 50: 275-282. doi: 10.1016/j.wasman.2016.02.028
|
[15] |
汪婷. 沼气发酵过程中产甲烷菌分子多样性研究及产甲烷菌的分离[D]. 南京: 南京农业大学, 2005.
|
[16] |
SAMBUSITI C, ROLLINI M, FICARA E, et al. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage[J]. Bioresource Technology, 2014, 155: 122-128. doi: 10.1016/j.biortech.2013.12.055
|
[17] |
ZEALAND A M, ROSKILLY A P, GRAHAM D W. Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw[J]. Applied Energy, 2017, 207: 156-165. doi: 10.1016/j.apenergy.2017.05.170
|
[18] |
ZHOU J, YANG J, YU Q, et al. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study[J]. Bioresource Technology, 2017, 244: 865-871.
|
[19] |
CHAPLEUR O, MADIGOU C, CIVADE R, et al. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities[J]. Biodegradation, 2016, 27(1): 15-27. doi: 10.1007/s10532-015-9751-4
|
[20] |
TAHERZADEH M J, KARIMI K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review[J]. International Journal of Molecular Sciences, 2008, 9(9): 1621-1651. doi: 10.3390/ijms9091621
|
[21] |
YANG S G, LI J H, ZHENG Z, et al. Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono- and co-digestion[J]. International Biodeterioration & Biodegradation, 2009, 63(5): 569-575.
|
[22] |
AMNUAYCHEEWA P, HENGAROONPRASAN R, RATTANAPORN K, et al. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids[J]. Industrial Crops and Products, 2016, 87: 247-254. doi: 10.1016/j.indcrop.2016.04.069
|
[23] |
KOMILIS D P, HAM R K. The effect of lignin and sugars to the aerobic decomposition of solid wastes[J]. Waste Management, 2003, 23(5): 419-423. doi: 10.1016/S0956-053X(03)00062-X
|
[24] |
ZHAO X B, ZHANG L H, LIU D H. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(4): 465-482. doi: 10.1002/bbb.v6.4
|
[25] |
XU F, SHI J, LV W, et al. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover[J]. Waste Management, 2013, 33(1): 26-32. doi: 10.1016/j.wasman.2012.08.006
|
[26] |
ROMSAIYUD A, SONGKASIRI W, NOPHARATANA A, et al. Combination effect of pH and acetate on enzymatic cellulose hydrolysis[J]. Journal of Environmental Sciences, 2009, 21(7): 965-970. doi: 10.1016/S1001-0742(08)62369-4
|