[1] |
HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment sources: Potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(4): 118-138.
|
[2] |
YU S, LEE P K, HWANG S I. Groundwater contamination with volatile organic compounds in urban and industrial areas: Analysis of co-occurrence and land use effects[J]. Environmental Earth Sciences, 2015, 74(4): 1-17.
|
[3] |
高存荣, 王俊桃. 我国69个城市地下水有机污染特征研究[J]. 地球学报, 2011, 32(5): 581-591. doi: 10.3975/cagsb.2011.05.08
|
[4] |
LANGWALDT J H, PUHAKKA J A. On-site biological remediation of contaminated groundwater: A review[J]. Environmental Pollution, 2000, 107(2): 187-197. doi: 10.1016/S0269-7491(99)00137-2
|
[5] |
宋震宇, 吴珉, 陈冠益. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理, 2014, 39(4): 104-106. doi: 10.3969/j.issn.1673-1212.2014.04.026
|
[6] |
孙仲平, 吴乃瑾, 魏文侠, 等. 电子供体刺激下厌氧微生物对1, 2-二氯乙烷的降解效果[J]. 环境科学研究, 2018, 31(8): 1431-1438.
|
[7] |
周红艺, 雷双健, 梁思. 纳米级金属铁还原脱氯技术的改进研究[J]. 水处理技术, 2013, 39(2): 5-10. doi: 10.3969/j.issn.1000-3770.2013.02.002
|
[8] |
SUNKARA B, ZHAN J J, HE J B, et al. Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons[J]. Applied Materials & Interfaces, 2010, 2(10): 2854-2862.
|
[9] |
DONG H R, ZHANG C, HOU K J, et al. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution[J]. Separation & Purification Technology, 2017, 188(29): 188-196.
|
[10] |
李丹, 金修齐, 王朋, 等. 水稻秸秆生物炭对罗丹明B的吸附与降解[J]. 环境工程学报, 2017, 11(9): 5195-5200.
|
[11] |
ZHAO L, CAO X D, WANG Q, et al. Mineral constituents profile of biochar derived from diversified waste biomasses: Implications for agricultural applications[J]. Journal of Environmental Quality, 2013, 42(2): 545-552. doi: 10.2134/jeq2012.0232
|
[12] |
唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35(6): 2236-2240.
|
[13] |
吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9): 1703-1709.
|
[14] |
张熔烁, 刘以凡, 吕源财, 等. 纳米零价铁钯/微生物联合体系降解五氯酚的研究[J]. 造纸科学与技术, 2016, 35(6): 67-72.
|
[15] |
李霞, 胡勤海, 陈菊芬, 等. 纳米TiO2/硅藻土光催化降解废水中二甲胺[J]. 环境工程学报, 2013, 7(8): 3073-3078.
|
[16] |
王亚洁, 朱永官, 孙国新, 等. 铁胞外呼吸菌shewanella oneidensis MR-1对根表铁膜中砷运移的影响[J]. 环境科学学报, 2015, 35(7): 2240-2246.
|
[17] |
王慧荣, 梅荣武, 韦彦斐, 等. 吹扫捕集-GC/MS联用定性分析城镇污水处理厂难降解污染物研究[J]. 环境科学与管理, 2013, 38(8): 56-60. doi: 10.3969/j.issn.1673-1212.2013.08.014
|
[18] |
LI X M, ZHOU S G, LI F B, et al. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17[J]. Journal of Applied Microbiology, 2010, 106(1): 130-139.
|
[19] |
TODOROVA S G, COSTELLO A M. Design of Shewanella-specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland[J]. Environmental Microbiology, 2010, 8(3): 426-432.
|
[20] |
林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206.
|
[21] |
刘钰维. 高岭土杂化改性端羧基聚乳酸复合材料的制备与性能研究[D]. 西安: 陕西科技大学, 2016.
|
[22] |
WANG Q L, SNYDER S A, KIM J W, et al. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity[J]. Environmental Science & Technology, 2009, 43(9): 3292-3299.
|
[23] |
WU H W, FENG Q Y, YANG H, et al. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 517(6): 63-71.
|
[24] |
吴德礼, 王红武, 马鲁铭. Ag/Fe催化还原体系处理水体中氯代烃的研究[J]. 环境科学, 2006, 27(9): 1802-1807. doi: 10.3321/j.issn:0250-3301.2006.09.019
|
[25] |
WEI Y, ZHANG J F, JING C Y. Enrofloxacin transformation on shewanella oneidensis MR-1 reduced goethite during anaerobic-aerobic transition[J]. Environmental Science & Technology, 2016, 50(20): 362-373.
|
[26] |
XU Y, HE Y, FENG X L, et al. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z[J]. Science of the Total Environment, 2014, 474(3): 215-223.
|
[27] |
CHEN M J, CAO F, LI F B, et al. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils[J]. Journal of Agricultural & Food Chemistry, 2013, 61(9): 2224-2233.
|
[28] |
GUO W Z, YANG R X, MARSHALL C W, et al. Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite enrichments[J]. Frontiers in Microbiology, 2017, 589(8): 1-14.
|
[29] |
KIRSCHLING T L, GREGORY K B, JR M E, et al. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(9): 3474-3480.
|
[30] |
李晓敏, 李永涛, 李芳柏, 等. 有机氯脱氯转化的铁还原菌与铁氧化物界面的交互反应[J]. 科学通报, 2009, 26(13): 1880-1884.
|