Zhao X Y, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260):86-90
Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156
Laschinski G, Vogel R, Spielmann H. Cytotoxicity test using blastocyst-derived euploid embryonal stem cells:A new approach to in vitro teratogenesis screening[J]. Reproductive Toxicology, 1991, 5(1):57-64
Spielmann H, Pohl I, Doring B, et al. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines:3T3 fibroblasts and embryonic stem cells[J]. Toxicology in Vitro, 1997, 10:119-127
Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147
Scholz G, Pohl I, Genschow E, et al. Embryotoxicity screening using embryonic stem cells in vitro:Correlation to in vivo teratogenicity[J]. Cells Tissues Organs, 1999, 165(3-4):203-211
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872
Park I H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells[J]. Cell, 2008, 134(5):877-886
Adler S, Pellizzer C, Hareng L, et al. First steps in establishing a developmental toxicity test method based on human embryonic stem cells[J]. Toxicology in Vitro, 2008, 22(1):200-211
Guo L, Abrams R M, Babiarz J E, et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes[J]. Toxicological Sciences, 2011, 123(1):281-289
Rowe R G, Daley G Q. Induced pluripotent stem cells in disease modelling and drug discovery[J]. Nature Reviews Genetics, 2019, 20(7):377-388
Pei Y, Peng J, Behl M, et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes[J]. Brain Research, 2016, 1638(Pt A):57-73
Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system:Evidence from humans and animal models[J]. Environmental Health Perspectives, 2000, 108(Suppl 3):511-533
Kadereit S, Zimmer B, van Thriel C, et al. Compound selection for in vitro modeling of developmental neurotoxicity[J]. Frontiers in Bioscience (Landmark Ed.), 2012, 17:2442-2460
Colleoni S, Galli C, Gaspar J A, et al. Development of a neural teratogenicity test based on human embryonic stem cells:Response to retinoic acid exposure[J]. Toxicological Sciences, 2011, 124(2):370-377
Hoelting L, Scheinhardt B, Bondarenko O, et al. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles[J]. Archive of Toxicology, 2013, 87(4):721-733
Huang B, Ning S, Zhang Q, et al. Bisphenol A represses dopaminergic neuron differentiation from human embryonic stem cells through downregulating the expression of insulin-like growth factor 1[J]. Molecular Neurobiology, 2017, 54(5):3798-3812
Krug A K, Kolde R, Gaspar J A, et al. Human embryonic stem cell-derived test systems for developmental neurotoxicity:A transcriptomics approach[J]. Archive of Toxicology, 2013, 87(1):123-143
Chen H, Seifikar H, Larocque N, et al. Using a multi-stage hESC model to characterize BDE-47 toxicity during neurogenesis[J]. Toxicological Sciences, 2019, 171(1):221-234
Trevino L S, Katz T A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease[J]. Endocrinology, 2018, 159(1):20-31
Liang S, Liang S, Yin N, et al. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations[J]. Ecotoxicology and Environmental Safety, 2019, 174:353-362
van der Linde D, Konings E E, Slager M A, et al. Birth prevalence of congenital heart disease worldwide:A systematic review and meta-analysis[J]. Journal of the American College of Cardiology 2011, 58(21):2241-2247
Hoffman J I E, Kaplan S. The incidence of congenital heart disease[J]. Journal of the American College of Cardiology, 2002, 39(12):1890-1900
Fu H, Wang L, Wang J, et al. Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells[J]. Science of the Total Environment, 2019, 651(Pt 1):1038-1046
Sant K E, Jacobs H M, Borofski K A, et al. Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio[J]. Environmental Pollution, 2017, 220(Pt B):807-817
Liu S, Yin N, Faiola F. PFOA and PFOS disrupt the generation of human pancreatic progenitor cells[J]. Environmental Science & Technology Letters, 2018, 5(5):237-242
Lind L, Zethelius B, Salihovic S, et al. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly[J]. Diabetologia, 2014, 57(3):473-479
Karnes C, Winquist A, Steenland K. Incidence of typeⅡ diabetes in a cohort with substantial exposure to perfluorooctanoic acid[J]. Environmental Research, 2014, 128:78-83
Domazet S L, Grontved A, Timmermann A G, et al. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later:The European Youth Heart Study[J]. Diabetes Care, 2016, 39(10):1745-1751
Conway B, Innes K E, Long D. Perfluoroalkyl substances and beta cell deficient diabetes[J]. Journal of Diabetes and Its Complications, 2016, 30(6):993-998
Cardenas A, Gold D R, Hauser R, et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial[J]. Environmental Health Perspectives, 2017, 125(10):107001
Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193):314-321
Culton D A, Qian Y, Li N, et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype:A paradigm of human autoimmunity[J]. Journal of Autoimmunity, 2008, 31(4):311-324
Cheng Z, Liang X, Liang S, et al. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis[J]. Journal of Environmental Sciences, 2020, 87:194-204
Haycock J W. 3D cell culture:A review of current approaches and techniques[J]. Methods in Molecular Biology, 2011, 695:1-15
Lancaster M A, Knoblich J A. Organogenesis in a dish:Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125
Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459):481-484
Pasca S P. The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553(7689):437-445
Richards D J, Coyle R C, Tan Y, et al. Inspiration from heart development:Biomimetic development of functional human cardiac organoids[J]. Biomaterials, 2017, 142:112-123
Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1-2):299-312
Leite S B, Roosens T, El Taghdouini A, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro[J]. Biomaterials, 2016, 78:1-10
Boj S F, Hwang C I, Baker L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1-2):324-338
Barkauskas C E, Chung M I, Fioret B, et al. Lung organoids:Current uses and future promise[J]. Development, 2017, 144(6):986-997
Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2017, 21(6):730-746.e6
Kessler M, Hoffmann K, Brinkmann V, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J]. Nature Communication, 2015, 6:8989
Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nature Communications, 2014, 5:4047
Foster J W, Wahlin K, Adams S M, et al. Cornea organoids from human induced pluripotent stem cells[J]. Scientific Reports, 2017, 7:41286
Maimets M, Rocchi C, Bron R, et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals[J]. Stem Cell Reports, 2016, 6(1):150-162
Turco M Y, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J].Nature Cell Biology, 2017, 19(5):568-577
Titmarsh D M, Nurcombe V, Cheung C, et al. Vascular cells and tissue constructs derived from human pluripotent stem cells for toxicological screening[J]. Stem Cells and Development, 2019, 28(20):1347-1364
Schwartz M P, Hou Z, Propson N E, et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40):12516-12521
Mills R J, Parker B L, Quaife-Ryan G A, et al. Drugscreening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway[J]. Cell Stem Cell, 2019, 24(6):895-907.e6
李朋彦, 李春雨, 陆小华, 等. 基于类器官3D培养和高内涵成像的药物肝毒性评价模型研究[J]. 药学学报, 2017, 52(7):1055-1062 Li P Y, Li C Y, Lu X H, et al. The three dimensional organoids-based high content imaging model for hepatotoxicity assessment[J]. Acta Pharmaceutica Sinica, 2017, 52(7):1055-1062(in Chinese)
Czerniecki S M, Cruz N M, Harder J L, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6):929-940.e4
Li X J, Valadez A V, Zuo P, et al. Microfluidic 3D cell culture:Potential application for tissue-based bioassays[J]. Bioanalysis, 2012, 4(12):1509-1525
van Duinen V, Trietsch S J, Joore J, et al. Microfluidic 3D cell culture:From tools to tissue models[J]. Current Opinion in Biotechnology, 2015, 35:118-126
Huh D, Matthews B D, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986):1662-1668
Park S E, Georgescu A, Huh D. Organoids-on-a-chip[J]. Science, 2019, 364(6444):960-965