Martínez G, Merinero M, Pérez-Aranda M, et al. Environmental impact of nanoparticles’ application as an emerging technology: A review [J]. Materials, 2020, 14(1): 166
Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine [J]. Molecules, 2019, 25(1): 112
Taylor R, Coulombe S, Otanicar T, et al. Small particles, big impacts: A review of the diverse applications of nanofluids [J]. Journal of Applied Physics, 2013, 113(1): 011301
Hu J, Xianyu Y L. When nano meets plants: A review on the interplay between nanoparticles and plants [J]. Nano Today, 2021, 38: 101143
Abbas Q, Yousaf B, Amina, et al. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review [J]. Environment International, 2020, 138: 105646
Amde M, Liu J F, Tan Z Q, et al. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review [J]. Environmental Pollution, 2017, 230: 250-267
Jacquot de Rouville H P, Kammerer C, Rapenne G. From the synthesis of nanovehicles to participation in the first nanocar race-view from the French team [J]. Molecules, 2018, 23((3): 612
Constantinescu M, Dumitrache L, Constantinescu D, et al. Latent heat nano composite building materials [J]. European Polymer Journal, 2010, 46(12): 2247-2254
Shami Z, Gharloghi A, Amininasab S M. Multifunctional pH-switched superwetting copolymer nanotextile: Surface engineered toward on-demand light oil-water separation on superhydrophilic-underwater low-adhesive superoleophobic nonwoven mesh [J]. ACS Sustainable Chemistry and Engineering, 2019, 7(9): 8917-8930
Faria M, Björnmalm M, Thurecht K J, et al. Minimum information reporting in bio-nano experimental literature [J]. Nature Nanotechnology, 2018, 13(9): 777-785
Singh Jassal P, Kaur D, Prasad R, et al. Green synthesis of titanium dioxide nanoparticles: Development and applications [J]. Journal of Agriculture and Food Research, 2022, 10: 100361
Andersen C P, King G, Plocher M, et al. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles [J]. Environmental Toxicology and Chemistry, 2016, 35(9): 2223-2229
Arif N, Yadav V, Singh S, et al. Interaction of Copper Oxide Nanoparticles with Plants: Uptake, Accumulation, and Toxicity [M]// Tripathi D K, Ahmad P, Sharma S, et al. Nanomaterials in Plants, Algae, and Microorganisms. Elsevier. 2018: 297-310
Avellan A, Schwab F, Masion A, et al. Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging [J]. Environmental Science & Technology, 2017, 51(15): 8682-8691
聂光丽, 何蓉, 唐玉林. 纳米氧化铜对生物体的毒害作用及机理[J]. 生命科学, 2015, 27(5): 618-624 Nie G L, He R, Tang Y L. The biological toxicity of copper oxide nanoparticles and its toxicology mechanisms [J]. Chinese Bulletin of Life Sciences, 2015, 27(5): 618-624 (in Chinese)
朱亮, 孟宪学. 文献计量法与内容分析法比较研究[J]. 图书馆工作与研究, 2013(6): 64-66 Zhu L, Meng X X. The comparative study on bibliometric method and content analysis method [J]. Library Work and Study, 2013 (6): 64-66 (in Chinese)
王曰芬. 文献计量法与内容分析法的综合研究[D]. 南京: 南京理工大学, 2007: 12 Wang Y F. A synthetic research of bibliometric method and content analysis method [D]. Nanjing: Nanjing University of Science and Technology, 2007: 12 (in Chinese)
郑娜, 邵党国. 信息可视化分析工具的比较分析——以CiteSpace、SATI分析关键词共现为例[J]. 软件, 2017, 38(10): 39-46 Zheng N, Shao D G. A comparative analysis of information visualization analysis tools—CiteSpace, SATI analysis of keywords co-occurrence as an example [J]. Computer Engineering & Software, 2017, 38(10): 39-46 (in Chinese)
张力, 赵星, 叶鹰. 信息可视化软件CiteSpace与VOSviewer的应用比较[J]. 信息资源管理学报, 2011, 1(1): 95-98 Zhang L, Zhao X, Ye Y. A comparison between CileSpace and VOSviewer in information visualization [J]. Journal of Information Resources Management, 2011, 1(1): 95-98 (in Chinese)
van Eck N J, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping [J]. Scientometrics, 2010, 84(2): 523-538
Qin F Z, Li J L, Zhang C, et al. Biochar in the 21st Century: A data-driven visualization of collaboration, frontier identification, and future trend [J]. The Science of the Total Environment, 2022, 818: 151774
Barkataki M P, Singh T. Plant-nanoparticle interactions: Mechanisms, effects, and approaches [J]. Comprehensive Analytical Chemistry, 2019, 87: 55-83
Chen H. Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants [J]. Chemical Speciation & Bioavailability, 2018, 30(1): 123-134
Yang J, Cao W D, Rui Y K. Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms [J]. Journal of Plant Interactions, 2017, 12(1): 158-169
牛硕, 陈卫平, 杨阳, 等. 基于文献计量的重金属污染土壤修复材料研究热点和前沿分析[J]. 环境工程技术学报, 2022, 12: 1-13 Niu S, Chen W P, Yang Y, et al. Bibliometric analysis of hotspots and frontiers on remediation materials for heavy metal contaminated soils [J]. Journal of Environmental Engineering Technology, 2022 , 12: 1-13 (in Chinese)
张晓晴, 李雅, 魏珊, 等. 基于CiteSpace土壤重金属污染防治的知识图谱研究[J]. 中国农学通报, 2022, 38(4): 133-143 Zhang X Q, Li Y, Wei S, et al. Knowledge map of soil heavy metal pollution control based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 133-143 (in Chinese)
Pei Z R, Chen S T, Ding L Q, et al. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis [J]. Journal of Controlled Release, 2022, 352: 211-241