Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
傅海霞, 刘怡, 董志英, 等. 抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016, 34(4):60-63 , 104 Fu H X, Liu Y, Dong Z Y, et al. Progress in research on ecological toxicity of combined pollution of antibiotics and heavy metals[J]. Environmental Engineering, 2016, 34(4):60-63, 104(in Chinese)
Pan X, Qiang Z M, Ben W W, et al. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China[J]. Chemosphere, 2011, 84(5):695-700
Blaser M J. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016, 352(6285):544-545
Aust M O, Godlinski F, Travis G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution, 2008, 156(3):1243-1251
陈昦, 董元华, 王辉, 等. 江苏省畜禽粪便中磺胺类药物残留特征[J]. 农业环境科学学报, 2008, 27(1):385-389 Chen H, Dong Y H, Wang H, et al. Residual characteristics of sulfanilamide in animal feces in Jiangsu Province[J]. Journal of Agro-Environment Science, 2008, 27(1):385-389(in Chinese)
杨玖, 谷洁, 张友旺, 等. 磺胺甲噁唑对堆肥过程中酶活性及微生物群落功能多样性的影响[J]. 环境科学学报, 2014, 34(4):965-972 Yang J, Gu J, Zhang Y W, et al. Effects of sulfamethoxazole on enzyme activity and microbial community functional diversity during pig manure composting[J]. Acta Scientiae Circumstantiae, 2014, 34(4):965-972(in Chinese)
Vittoria Pinna M, Castaldi P, Deiana P, et al. Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community[J]. Ecotoxicology and Environmental Safety, 2012, 84:234-242
Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
韩长赋. 加强东北黑土地保护推进农业绿色发展. 人民日报, 2018-02-05(7)
车占杉, 武志敏. 杜尔伯特蒙古族自治县发展草地畜牧业存在的问题及对策[J]. 现代畜牧科技, 2016(7):1-2
陈敬晶. 杜尔伯特蒙古族自治县湿地保护对策分析[J]. 科学技术创新, 2018(8):155-156
Zhang T, Li X Y, Wang M F, et al. Time-resolved spread of antibiotic resistance genes in highly polluted air[J]. Environment International, 2019, 127:333-339
张昊. 抗生素及其耐药性在畜禽粪便-土壤-蔬菜中的传播和转移[D]. 新乡:河南师范大学, 2018:17-52 Zhang H. Spread and transfer of antibiotics and antibiotic resistance in the livestock manure-soil-vegetable endophytic system[D]. Xinxiang:Henan Normal University, 2018:17 -52(in Chinese)
寇宏, 吕世明, 谭艾娟, 等. 贵州省猪源大肠杆菌对磺胺类抗菌药物耐药性及耐药基因检测[J]. 中国兽医杂志, 2018, 54(9):75-78 Kou H, Lv S M, Tan A J, et al. Detecting antibiotic resistance and resistance genes of sulfonamides in Escherichia coli isolated from swine farms in Guizhou Province[J]. Chinese Journal of Veterinary Medicine, 2018, 54(9):75-78(in Chinese)
Song H L, Li H, Zhang S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350:920-929
沈群辉. 养殖场及周边农田土壤抗生素抗性基因和重金属污染初步研究[D]. 上海:东华大学, 2013:12-21 Shen Q H. Preliminary studies on the pollution levels of antibiotic resistance genes and heavy metals in feedlots and agricultural soils adjacent to feedlots in Shanghai, China[D]. Shanghai:Donghua University, 2013:12 -21(in Chinese)
Heuer H, Solehati Q, Zimmerling U, et al. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine[J]. Applied and Environmental Microbiology, 2011, 77(7):2527-2530
Tang X J, Lou C L, Wang S X, et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils:Evidence from four field experiments in south of China[J]. Soil Biology and Biochemistry, 2015, 90:179-187
Cerqueira F, Matamoros V, Bayona J, et al. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes[J]. Environmental Research, 2019, 170:16-25
Forsberg K J, Patel S, Gibson M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509(7502):612-616
Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2):790-800
Luo G, Li B, Li L G, et al. Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis[J]. Environmental Science & Technology, 2017, 51(7):4069-4080
Ma L P, Li A D, Yin X L, et al. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments[J]. Environmental Science & Technology, 2017, 51(10):5721-5728
Sun M M, Ye M, Wu J, et al. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China[J]. Environmental Pollution, 2015, 206:421-428
Chen B W, He R, Yuan K, et al. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils[J]. Environmental Pollution, 2017, 220(Pt B):1005-1013