[1] |
POSMANIK R, NEJIDAT A, BAR-SINAR B, et al. Integrated biological treatment of fowl manure for nitrogen recovery and reuse[J]. Journal of Environmental Management, 2013, 117: 172-179.
|
[2] |
LIN H, ZHANG J, CHEN H, et al. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures[J]. Science of the Total Environment, 2017, 607-608: 725-732.
|
[3] |
苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487.
|
[4] |
ZHANG L, GU J, WANG X, et al. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure[J]. Bioresource Technology, 2017, 250: 799-805.
|
[5] |
ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2: 16270.
|
[6] |
LI J J, XIN Z H, ZHANG Y Z, et al. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil[J]. Applied Soil Ecology, 2017, 121: 193-200.
|
[7] |
ELIZABETH R, CHANDA D D, CHAKRAVARTY A, et al. Association of glycerol kinase gene with class 3 integrons: A novel cassette array within Escherichia coli[J]. Indian Journal of Medical Microbiology, 2018, 36(1): 104-107.
|
[8] |
WANG F H, QIAO M, CHEN Z, et al. Antibiotic resistance genes in manure-amended soil and vegetables at harvest[J]. Journal of Hazardous Materials, 2015, 299: 215-221.
|
[9] |
ZHANG Y J, HU H W, GOU M, et al. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics[J]. Environmental Pollution, 2017, 231(2): 1621-1632.
|
[10] |
MAZEL D. Integrons: Agents of bacterial evolution[J]. Nature Reviews Microbiology, 2006, 4(8): 608-620.
|
[11] |
MOHADESEH Z Y, GILDA E, HENGAMEH Z, et al. Prevalence of class 1, 2 and 3 integrons among multidrug-resistant Pseudomonas aeruginosa in Yazd, Iran[J]. Iranian Journal of Microbiology, 2018, 10: 300-306.
|
[12] |
何芳, 罗阳, 浣成, 等. 高温堆肥技术在我国畜禽粪便污染治理中的应用[J]. 安徽农业科学, 2018, 46(17): 41-43.
|
[13] |
WANG K, CHU C, LI X K, et al. Succession of bacterial community function in cow manure composing[J]. Bioresource Technology, 2018, 267: 63-70.
|
[14] |
WANG K, MAO H, LI X K. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent[J]. Bioresource Technology, 2018, 249: 527-535.
|
[15] |
LIAO H P, LU X M, RENSING C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology, 2018, 52(1): 266-276.
|
[16] |
ZHANG J, SUI Q W, TONG J, et al. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts[J]. Environment International, 2018, 118: 34-43.
|
[17] |
DUAN M, GU J, WANG X, et al. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting[J]. Ecotoxicology Environmental Safety, 2018, 147: 637-642.
|
[18] |
ZHAO X, WANG J, ZHU L, et al. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils[J]. Science of the Total Environment, 2018, 654: 906-913.
|
[19] |
ACCINELLI C, KOSKINEN W C, BECKER J M, et al. Environmental fate of two sulfonamide antimicrobial agents in soil[J]. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677-2682.
|
[20] |
LIANG Y, MENG P, WANG D, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes[J]. Environmental Science & Technology, 2017, 51(9): 4988-4998.
|
[21] |
吴传栋. 基于碳源调控的污泥堆肥氮素转化及氨同化作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[22] |
ASGHARPOUR F, AMIN MARASHI S M, MOULANA Z. Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella infantis isolates[J]. Iranian Journal of Microbiology, 2018, 10(2): 104-110.
|
[23] |
CHEN J, YU Z T, MICHEL F C, et al. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Applied and Environmental Microbiology, 2007, 73(14): 4407-4416.
|
[24] |
钱勋. 好氧堆肥对畜禽粪便中抗生素抗性基因的削减条件探索及影响机理研究[D]. 杨凌: 西北农林科技大学, 2016.
|
[25] |
TELLA M, DOELSCH E, LETOURMY P, et al. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops[J]. Waste Management, 2013, 33(1): 184-192.
|
[26] |
孙红霞, 张花菊, 徐亚铂, 等. 猪饲料、粪便、沼渣和沼液中重金属元素含量的测定分析[J]. 黑龙江畜牧兽医, 2017, 5(9): 285-287.
|
[27] |
NICHOLSON F A, SMITH S R, ALLOWAY B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. Water & Environment Journal, 2006, 311(1/2/3): 205-219.
|
[28] |
HAN X M, HU H W, CHEN Q L, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology and Biochemistry, 2018, 126: 91-102.
|
[29] |
LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
|
[30] |
李谦. 畜禽粪便及有机肥中的重金属、抗生素和抗性基因及其在堆肥过程中的变化[D]. 南京: 南京农业大学, 2006.
|
[31] |
彭双, 王一明, 林先贵. 连续施用发酵猪粪对土壤中四环素抗性基因数量的影响[J]. 中国环境科学, 2015, 35(4): 1173-1180.
|
[32] |
PENG S, FENG Y Z, WANG Y M, et al. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 2017, 340: 16-25.
|
[33] |
SANDBERG K D, LAPARA T M. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils[J]. FEMS Microbiology Ecology, 2016, 92(2): 1-7.
|
[34] |
ROBERTS M C. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes[J]. FEMS Microbiology Letters, 2008, 282(2): 147-159.
|