[1] |
方德琼. 山地城市污水管道中有害气体的检测及分布规律研究[D]. 重庆: 重庆大学, 2012.
|
[2] |
PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198): 812-814.
|
[3] |
OJHA V K, DUTTA P, CHAUDHURI A. Identifying hazardousness of sewer pipeline gas mixture using classification methods: A comparative study[J]. Neural Computing & Applications, 2016, 28(6): 1-12.
|
[4] |
JIANG G, KELLER J, BOND P L. Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion[J]. Water Research, 2014, 65: 157-169.
|
[5] |
GUISASOLA A, HAAS D D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
|
[6] |
张远, 吕淑然, 杨凯, 等. 城市污水管道甲烷爆炸防控对策研究现状及展望[J]. 安全与环境工程, 2015, 22(5): 134-138.
|
[7] |
NIELSEN A H, VOLLERTSEN J, JENSEN H S, et al. Aerobic and anaerobic transformations of sulfide in a sewer system: Field study and model simulations[J]. Water Environment Research, 2008, 80(1): 16-25.
|
[8] |
李怀正, 张璐璇, 汤霞, 等. 城市排水管道中硫化氢产气原因及影响因素分析[J]. 环境科学与管理, 2012, 37(4): 95-97.
|
[9] |
CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Environmental Letters, 2014, 49(11): 1316-1321.
|
[10] |
GUISASOLA A, SHARMA K R, KELLER J, et al. Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009, 43(11): 2874-2884.
|
[11] |
HVITVEDJACOBSEN T, VOLLERTSEN J, NIELSEN A H, et al. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks[M]. USA:CRC Press, 2013.
|
[12] |
MOHAMMAD K, EHSAN D. Optimal design of wastewater collection networks based on production rate of hydrogen sulfide[J]. Life Science Journal, 2015, 12(8): 73-77.
|
[13] |
SHARMA K R, YUAN Z, DE H D, et al. Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11): 2527-2538.
|
[14] |
FOLEY J, YUAN Z, LANT P. Dissolved methane in rising main sewer systems: Field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science & Technology, 2009, 60(11): 2963-2971.
|
[15] |
LIU Y, NI B, SHARMA K, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524-525: 40-51.
|
[16] |
FIRER D, FRIEDLER E, LAHAV O. Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications[J]. Science of the Total Environment, 2008, 392(1): 145-156.
|
[17] |
NIELSEN A H, HVITVEDJACOBSEN T, VOLLERTSEN J. Kinetics and stoichiometry of sulfide oxidation by sewer biofilms[J]. Water Research, 2005, 39(17): 4119-4125.
|
[18] |
CALABRò P S, MANNINA G, VIVIANI G. In sewer processes: Mathematical model development and sensitivity analysis[J]. Water Science & Technology, 2009, 60(1): 107-115.
|
[19] |
DONCKELS B M R, KROLL S, DORPE M VAN, et al. Global sensitivity analysis of an in-sewer process model for the study of sulfide-induced corrosion of concrete[J]. Water Science & Technology, 2014, 69(3): 647-655.
|
[20] |
VOLLERTSEN J, HVITVEDJACOBSEN T. Stoichiometric and kinetic model parameters for microbial transformations of suspended solids in combined sewer systems[J]. Water Research, 1999, 33(14): 3127-3141.
|
[21] |
VOLLERTSEN J, REVILLA N, HVITVEDJACOBSEN T, et al. Modeling sulfides, pH and hydrogen sulfide gas in the sewers of San Francisco[J]. Water Environment Research, 2015, 87(11): 1980-1989.
|