[1] |
郦建国, 朱法华, 孙雪丽. 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51(6): 2-10.
|
[2] |
孙雪丽, 朱法华, 王圣, 等.燃煤电厂颗粒物超低排放技术路线选择[J].环境工程技术学报, 2018, 8(2): 129-136.
|
[3] |
郑楚光. 洁净煤技术[M]. 武汉: 华中理工大学出版社, 1996.
|
[4] |
马广大. 大气污染控制工程[M]. 北京: 中国环境科学出版社, 2004.
|
[5] |
中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015.
|
[6] |
刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中SO3生成、治理及测试技术研究[J]. 中国电力, 2015, 48(9): 152-156.
|
[7] |
HUANG R J, ZHANG Y L, CARLO B, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514 (7521): 218-222.
|
[8] |
舒喜, 田原润, 惠润堂, 等. SO3在燃煤电厂各设备中形成和脱除现状研究[J]. 环境科学与技术, 2017, 40(11): 121-126.
|
[9] |
王定帮, 雷鸣, 余福胜, 等. 燃煤机组 SO3迁移规律及排放特性试验[J]. 热力发电, 2018, 47(11): 96-101.
|
[10] |
潘丹萍, 吴昊, 鲍静静, 等. 电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J]. 中国电机工程学报, 2016, 36(16): 4356-4362.
|
[11] |
陈鹏芳, 朱庚富, 张俊翔. 基于实测的燃煤电厂烟气协同控制技术对 SO3去除效果的研究[J]. 环境污染与防治, 2017, 39(3): 232-235.
|
[12] |
沈志刚, 刘启贞, 陶雷行, 等. 湿式电除尘器对烟气中颗粒物的去除特性[J], 环境工程学报, 2016, 10(5): 2557-2561.
|
[13] |
杨玮, 孙彬彬, 王雪, 等. 山西某电厂燃煤烟气SO3与颗粒物排放特征[J], 环境工程, 2018, 36(1): 83-87.
|
[14] |
陈瑶姬, 孟炜, 胡达清. 燃煤电厂烟气超低排放技术对三氧化硫脱除影响的研究[J], 上海节能, 2015(12): 657-660.
|
[15] |
杨丁, 陈永强, 陈威祥, 等. SO3采样技术改进及烟气处理设备SO3脱除能力测试[J]. 中国电力, 2018, 51(7): 157-161.
|
[16] |
聂孝峰, 张超, 刘源, 等. 湿式电除尘(雾)器在燃煤电厂300MW 机组上的应用[J]. 电力科技与环保, 2016, 32(2): 31-34.
|
[17] |
刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中低浓度SO3采样方法研究 [J]. 环境工程, 2017, 35(11): 139-142.
|
[18] |
张德君, 刘含笑, 赵琳, 等. 燃煤电厂可凝结颗粒物(SO3)采样方法研究[J]. 中国电力, 2018, 51(6): 1-5
|
[19] |
李皓然, 刘含笑, 赵琳, 等. 湿式电除尘器性能测试方法及排放特征研究[J]. 中国电力, 2018, 51(9): 1-7.
|
[20] |
吴金, 刘含笑, 郦建国, 等. 基于中试平台的低低温电除尘器深度试验研究[J]. 中国电力, 2018, 51(6): 11-16.
|
[21] |
刘含笑, 姚宇平, 郦建国, 等. 低低温电除尘技术适用性及污染物减排特性研究[J]. 动力工程学报, 2018, 38(8): 650-657.
|
[22] |
刘含笑, 姚宇平, 郦建国, 等. 一种适用于低浓度三氧化硫采样的采样系统: 201710049703. 7[P]. 2017-06-09.
|
[23] |
魏宏鸽, 程雪山, 马颜斌, 等. 燃煤烟气中SO3的产生与转化及其抑制对策谈谈[J]. 发电与空调, 2012, 33(2): 1-4.
|
[24] |
纪培栋. SCR 催化剂 SO2氧化机理及调控机制研究[D]. 杭州: 浙江大学, 2016.
|
[25] |
刘含笑, 袁建国, 郦祝海, 等. 低低温工况下颗粒凝并机理分析及研究方法初探[J]. 电力与能源, 2015, 36(1): 107-111.
|
[26] |
刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425.
|
[27] |
中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015.
|
[28] |
郦建国, 郦祝海, 何毓忠, 等. 低低温电除尘技术的研究及应用[J]. 中国环保产业, 2014(3): 28-34.
|
[29] |
名嶋慎司. 石炭火力用低低温電気集塵装置[J]. 住友重機械技報, 2001, 146: 35-38.
|
[30] |
YOSHIO N, WALKER J, BELO L, et al. SO3 emission and removal by dust in coal-fired oxy-fuel combustion[J]. Energy & Fuel, 2014, 28(8): 5296-5306.
|
[31] |
陈奎续. 电袋复合除尘+湿法脱硫工艺脱除多污染物的效果研究[J]. 环境污染与防治, 2018, 40(4): 398-403.
|
[32] |
刘勇. 碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D]. 杭州: 浙江大学, 2018.
|
[33] |
SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762.
|
[34] |
莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-51.
|
[35] |
杜振, 杨立强, 魏宏鸽, 等. 低低温电除尘器对粉尘特性和SO3[J]. 中国电力, 2017, 50(9): 125-128.
|
[36] |
YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66.
|
[37] |
张雪峰, 杨正大, 李响, 等. SO3 对高湿静电场中电晕放电的影响机制研究[J]. 中国环境科学, 2017, 37(9): 3268-3275.
|
[38] |
YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy & Fuels, 2017, 31(8): 8400-8406.
|
[39] |
KEENER T C, KHANG S J. Kinetics of the sodium bicarbonate-sulfur dioxide reaction[J]. AICHE Journal, 1987, 33(9): 1522-1532.
|
[40] |
陈鹏. 钙基吸收剂脱除燃煤烟气中SO3的研究[D]. 济南: 山东大学, 2011.
|
[41] |
陈晓露, 赵钦新, 鲍颖群, 等.SO3脱除技术实验研究[J].动力工程学拫, 2014, 34(12): 966-971.
|
[42] |
娄彤, 方晓东, 陆明智, 等.燃煤烟气多污染物协同治理试验研究[J]. 洁净煤技术, 2018, 24(5): 966-971.
|
[43] |
谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128-134.
|
[44] |
TAN H, WANG Y, CAO R, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J]. Applied Thermal Engineering, 2017, 130: 1208-1214.
|
[45] |
王述浩, 李水清, 段璐, 等. 相变凝聚器内蒸汽凝结与细颗粒团聚规律研究[J]. 中国电机工程学报, 2017, 37(24): 7230-7235.
|
[46] |
LIU J M, ZHU F H, MA X Y. Industrial application of a deep purification technology for flue gas involving phase-transition agglomeration and dehumidification[J]. Engineering, 2018, 4(3): 416-420.
|