[1] WANG J, LI Q, QI R, et al. Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant[J]. Process Biochemistry, 2014, 49(12): 2258-2265.
[2] WANNER J, KRAGELUND C, NIELSEN P H. Microbiology of Bulking. In: Microbial Ecology of Activated Sludge[M]. London: IWA Publishing, 2010.
[3] NIELSEN P H, KRAGELUND C, SEVIOUR R J, et al. Identity and ecophysiology of filamentous bacteria in activated sludge[J]. FEMS Microbiology Reviews, 2010, 33(6): 969-998.
[4] KRHUTKOVA O, RUZICKOV? I, WANNER J. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000[J]. Water Science & Technology, 2002, 46(1/2): 471-478.
[5] SEVIOUR E M, WILLIAMS C, DEGREY B, et al. Studies on filamentous bacteria from Australian activated sludge plants[J]. Water Research, 1994, 28(11): 2335-2242.
[6] WANG J, QI R, LIU M, et al. The potential role of Candidatus Microthrix parvicella in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants[J]. Water Science & Technology, 2014, 70(2): 367-375.
[7] MIELCZAREK A T, KRAGELUND C, ERIKSEN P S, et al. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal[J]. Water Research, 2012, 46(12): 3781-3795.
[8] WANG P, YU Z, QI R, et al. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant[J]. Water Research, 2016, 105: 157-166.
[9] ROSSETTI S, CHRISTENSSON C, BLACKALL L L, et al. Phenotypic and phylogenetic description of an Italian isolate of Microthrix parvicella[J]. Journal of Applied Microbiology, 1997, 82(4): 405-410.
[10] LYKO S, TEICHGR?BER B, KRAFT A. Bulking control by low-dose ozonation of returned activated sludge in a full-scale wastewater treatment plant[J]. Water Science & Technology, 2012, 65(9): 1654-1659.
[11] PARIS S, LIND G, LEMMER H, et al. Dosing aluminum chloride to control Microthrix parvicella[J]. Clean - Soil, Air, Water, 2005, 33(3): 247-254.
[12] DURBAN N, JUZAN L, KRIER J, et al. Control of Microthrix parvicella by aluminium salts addition[J]. Water Science & Technology, 2016, 73(2): 414-422.
[13] NIELSEN P H, KRAGELUND C, NIELSEN J L, et al. Control of Microthrix parvicella in activated sludge plants by dosage of polyaluminium salts: Possible mechanisms[J]. Clean-Soil Air Water, 2005, 33(3): 255-261.
[14] ANDREASEN K, SIGVARDSEN L. Experiences with sludge settle ability in different process alternatives for nutrient removal[J]. Water Science & Technology, 1996, 33(12): 137-146.
[15] MINO T. Survey on filamentous micro-organisms in activated sludge processes in Bangkok, Thailand[J]. Water Science & Technology, 1995, 31(9): 193-202.
[16] MARTINS A M, PAGILLA K, HEIJNEN J J, et al. Filamentous bulking sludge: A critical review[J]. Water Research, 2004, 38(4): 793-817.
[17] EIKELBOOM D H, ANDREADAKIS A, ANDREASEN K. Survey of filamentous populations in nutrient removal plants in four European countries[J]. Water Science & Technology, 1998, 37(4/5): 281-289.
[18] MILOBEDZKA A, MUSZYNKI A. Population dynamics of filamentous bacteria identified in Polish full-scale wastewater treatment plants with nutrients removal[J]. Water Science & Technology, 2015, 71(5): 675-684.
[19] ROSSETTI S, TOMEI M C, NIELSEN P H, et al. Microthrix parvicella, a filamentous bacterium causing bulking and foaming in activated sludge systems: A review of current knowledge[J]. FEMS Microbiology Reviews, 2005, 29(1): 49-64.
[20] KRISTENSEN G H, JORGENSEN P E. Settling characteristics of activated sludge in Danish treatment plants with biological nutrient removal[J]. Water Science & Technology, 1994, 29(7): 157-165.
[21] WANNER J, RUZICKOVA I, JETMAROVA P, et al. A national survey of activated sludge separation problems in the Czech Republic: Filaments, floc characteristics and activated sludge metabolic properties[J]. Water Science & Technology, 1998, 37(4/5): 271-279.
[22] MADONI P, DAVOLI D, GIBIN G. Survey of filamentous microorganisms from bulking and foaming activated-sludge plants in Italy[J]. Water Research, 2000, 34(6): 1767-1772.
[23] KUNST S. Practical investigations on bulking and foaming in activated sludge plants with biological phosphorus removal[J]. Water Science & Technology, 1994, 29(7): 289-294.
[24] PUJOL R. Contact zone: French practice with low F/M bulking control[J]. Water Science & Technology, 1994, 29(7): 221-228.
[25] GRAVELEAU L, COTTEUX E, DUCHèNE P. Bulking and foaming in France: The 1999-2001 survey[J]. Acta Hydrochimica et Hydrobiologica, 2005, 33(3): 223-231.
[26] STROM P F, JENKINS D. Identification and significance of filamentous microorganisms in activated sludge[J]. Water Pollution Control Federation, 1984, 56(5): 449-459.
[27] SWITZENBAUM M S, PLANTE T R, WOODWORTH B K. Filamentous bulking in Massachusetts: Extent of the problem and case-studies[J]. Water Science & Technology, 1992, 25: 265-271.
[28] DI M W. First results from a screening of filamentous organisms present in Buenos Aires s activated sludge plants[J]. Water Science & Technology, 2002, 46(1/2): 119-122.
[29] VAN VEEN W L. Bacteriology of activated sludge, in particular the filamentous bacteria[J]. Antonie Van Leeuwenhoek, 1973, 39(1): 189-205.
[30] SLIJKHUIS H. Microthrix parvicella, a filamentous bacterium isolated from activated sludge: Cultivation in a chemically defined medium[J]. Applied & Environmental Microbiology, 1983, 46(4): 832-839.
[31] BLACKALL L L, SEVIOUR E M, CUNNINGHAM M A, et al. Microthrix parvicella is a novel, deep branching member of the actinomycetes subphylum[J]. Systematic & Applied Microbiology, 1995, 17(4): 513-518.
[32] JENKINS D, RICHARD M G, DAIGGER G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems[M]. 3rd Edition. London: IWA Publishing, 2003.
[33] LEVANTESI C, ROSSETTI S, THELEN K, et al. Phylogeny, physiology and distribution of Candidatus Microthrix calida, a new Microthrix species isolated from industrial activated sludge wastewater treatment plants[J]. Environmental Microbiology, 2006, 8(9): 1552-1563.
[34] FEI X, LI S, CAO L, et al. A novel separation method of Microthrix parvicella filaments from activated sludge by a hydrophobic plate[J]. Current Microbiology, 2015, 71(4): 465-470.
[35] TANDOI V, ROSSETTI S, BLACKALL L L, et al. Some physiological properties of an Italian isolate of Microthrix parvicellai[J]. Water Science & Technology, 1998, 37(4/5): 1-8.
[36] SLIJKHUIS H, DEINEMA M H. The physiology of Microthrix parvicella a filamentous bacterium isolated from activated sludge[M]//CHAMBERS B, TOMLINSON E J.Bulking of Activated Sludge: Preventative and Remedial Methods. Chichester, England: Ellis Horwood limited, 1982: 75-83.
[37] ROSSETTI S, TOMEI M C, LEVANTESI C, et al. Microthrix parvicella: A new approach for kinetic and physiological characterization[J]. Water Science & Technology, 2002, 46(1/2): 65-72.
[38] ANDREASEN K, NIELSEN P H. Growth of Microthrix parvicella in nutrient removal activated sludge plants: Studies of in situ physiology[J]. Water Research, 2000, 34(5): 1559-1569.
[39] MCILROY S J, KRISTIANSEN R, ALBERTSEN M, et al. Metabolic model for the filamentous Candidatus Microthrix parvicella based on genomic and metagenomic analyses[J]. ISME Journal, 2013, 7(6): 1161-1172.
[40] FAN N, QI R, ROSSETTI S, et al. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge[J]. Science of the Total Environment, 2017, 609: 1192-1199.
[41] NIELSEN P H, ROSLEV P, DUEHOLM T E, et al. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants[J]. Water Science & Technology, 2002, 46(1/2): 73-80.
[42] MULLER E E, PINEL N, GILLECE J D, et al. Genome sequence of Candidatus Microthrix parvicella Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant[J]. Journal of Bacteriology, 2012, 194(23): 6670-6671.
[43] DUNKEL T, ERIKA L D L G, SCH?NSEE C D, et al. Evaluating the influence of wastewater composition on the growth of Microthrix parvicella by GCxGC/qMS and real-time PCR[J]. Water Research, 2016, 88: 510-523.
[44] 王慕华, 王琴, 齐嵘. 挥发性脂肪酸对丝状菌群落结构的影响[J]. 生物技术世界, 2016(5): 41-42.
[45] BEJVL Z, MATUSKA P, STARA J, et al. Performances of three R-AN-D-N wastewater treatment plants in the Czech Republic[J]. Water Science & Technology, 2004, 50(7): 249-255.
[46] MIANA P, GRANDO L, CARAVELLO G, et al. Microthrix parvicella foaming at the Fusina WWTP[J]. Water Science & Technology, 2002, 46(1/2): 499-502.
[47] KNOOP S, KUNST S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella[J]. Water Science & Technology, 1998, 37(4): 27-35.
[48] ANDREASEN K, NIELSEN P H. Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge[J]. Applied and Environmental Microbiology, 1997, 63(9): 3662-3668.
[49] SHEIK A R, MULLER E E, AUDINOT J N, et al. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella[J]. ISME Journal, 2016, 10(5): 1274-1279.
[50] XIE B, DAI X C, XU Y T. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella: A case study in triple oxidation ditch at a wastewater treatment plant[J]. Journal of Hazardous Materials, 2007, 143(1): 184-191.
[51] MARTINS A M P, HEIJNEN J J, LOOSDRECHT M C M V. Effect of dissolved oxygen concentration on sludge settle ability[J]. Applied Microbiology & Biotechnology, 2003, 62(5/6): 586-593.
[52] HWANG Y, TANAKA T. Control of Microthrix parvicella foaming in activated sludge[J]. Water Research, 1998, 32(5): 1678-1686.
[53] LEVéN L, WIJNBLADH E, TUVESSON M, et al. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP[J]. Water Science & Technology, 2016, 73(4): 866-872.
[54] CHU L, WANG J, WANG B, et al. Changes in biomass activity and characteristics of activated sludge exposed to low ozone dose[J]. Chemosphere, 2009, 77(2): 269-272.
[55] ROELS T, DAUWE F, VAN D S, et al. The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella[J]. Water Science & Technology, 2002, 46(1/2): 487-490.
[56] RAMI?REZ G W, ALONSO J L, VILLANUEVA A, et al. A rapid, direct method for assessing chlorine effect on filamentous bacteria in activated sludge[J]. Water Research, 2000, 34(15): 3894-3898.
[57] SéKA M A, KALOGO Y, HAMMES F, et al. Chlorine-susceptible and chlorine-resistant type 021N bacteria occurring in bulking activated sludges[J]. Applied & Environmental Microbiology, 2001, 67(11): 5303-5307.
[58] SAAYMANT G B, SCHUTTE C F, LEEUWEN J V. The effect of chemical bulking control on biological nutrient removal in a full scale activated sludge plant[J]. Water Science & Technology, 1996, 34(3/4): 275-282.
[59] SOBECK D C, HIGGINS M J. Examination of three theories for mechanisms of cation-induced bioflocculation[J]. Water Research, 2002, 36(3): 527-538.
[60] CLAUSS F, HELAINE D, BALAVOINE C, et al. Improving activated sludge floc structure and aggregation for enhanced settling and thickening performances[J]. Water Science & Technology, 1998, 38(8/9): 35-44.
[61] MAMAIS D, KALAITZI E, ANDREADAKIS A. Foaming control in activated sludge treatment plants by coagulants addition[J]. Global Nest Journal, 2011, 13(3): 237-245.
[62] PRENDL L, KROIΒ H. Bulking sludge prevention by an aerobic selector[J]. Water Science & Technology, 1998, 38(8): 19-27.
[63] KRUIT J, HULSBEEK J, VISSER A. Bulking sludge solved[J]. Water Science & Technology, 2002, 46(1/2): 457-464.
[64] ZHOU J, WANG H, YANG K, et al. Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors[J]. Water Science & Technology, 2014, 70(9): 1519-1525.
[65] WILéN B M, BALMéR P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs[J]. Water Research, 1999, 33(2): 391-400.
[66] FIA?KOWSKA E, PAJDAK-STóS A. The role of Lecane rotifers in activated sludge bulking control[J]. Water Research, 2008, 42(10/11): 2483-2490.