[1] WANG S M, LIU X Y, YU H, et al. Nitrogen removal from urban stormwater runoff by stepped bioretention systems[J]. Ecological Engineering, 2017, 106: 340-348. doi: 10.1016/j.ecoleng.2017.05.055
[2] 胡爱兵, 李子富, 张书函, 等.模拟生物滞留池净化城市机动车道路雨水径流[J].中国给水排水, 2012, 28(13): 75-79. doi: 10.3969/j.issn.1000-4602.2012.13.019
[3] 仇付国, 陈丽霞.雨水生物滞留系统控制径流污染物研究进展[J].环境工程学报, 2016, 10(4): 1593-1602.
[4] 阮添舜, 李家科.生物滞留设施植物∙填料∙微生物研究进展[J].安徽农业科学, 2017, 45(18): 63-69. doi: 10.3969/j.issn.0517-6611.2017.18.021
[5] PAYNE E G, PHAM T, COOK P L M, et al. Biofilter design for effective nitrogen removal from stormwater-influence of plant species, inflow hydrology and use of a saturated zone[J]. Water Science and Technology, 2014, 69(6): 1312-1319. doi: 10.2166/wst.2014.013
[6] READ J, WEVILL T, FLETCHER T, et al. Variation among plant species in pollutant removal from stormwater in biofiltration systems[J]. Water Research, 2008, 42(4/5): 893-902.
[7] ALLEN C R, STEIN O R, HOOK P B, et al. Temperature, plant species and residence time effects on nitrogen removal in model treatment wetlands[J]. Water Science & Technology, 2013, 68(11): 2337-2343.
[8] JENIFER C S. Evaluation of three plant species for stormwater treatment in bioretention basins[D]. East Lansing: Michigan State University, 2012.
[9] 陈韬, 张本, 李剑沣, 等.几种生物滞留植物对雨水中营养物的吸收动力学特征[J].环境工程, 2018, 36(9): 21-25.
[10] TRACEY P. The effect of vegetation in stormwater biofiltration systems: Influences on infiltration rate and nutrient removal[D]. Melbourne: Monash University, 2015.
[11] 孟莹莹, 王会肖, 张书函, 等.基于生物滞留的城市道路雨水滞蓄净化效果试验研究[J].北京师范大学学报(自然科学版), 2013, 49(2/3): 286-291.
[12] 陈敬芬.生物滞留技术去除雨水径流中污染物的研究[D].青岛: 青岛大学, 2018.http://cdmd.cnki.com.cn/Article/CDMD-11065-1018881543.htm
[13] OVERSBY B, PAYNE E G I, FLETCHER T, et al. Vegetation guidelines for stormwater biofilters in the south-west of Western Australia[P]. Melbourne: Monash University, 2014.
[14] BROWN R, BIRGAND F, HUNT W. Analysis of consecutive events for nutrient and sediment treatment in field-monitored bioretention cells[J]. Water, Air & Soil Pollution, 2013, 224(6): 1-14.
[15] LYNN T J, YEH D H, ERGAS S J. Performance of denitrifying stormwater biofilters under intermittent conditions[J]. Environmental Engineering Science, 2015, 32(9): 796-805. doi: 10.1089/ees.2015.0135
[16] RYCEWICZ-BORECKI M, MCLEAN J E, Dupont R R. Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms[J]. Ecological Engineering, 2017, 99: 409-416. doi: 10.1016/j.ecoleng.2016.11.020
[17] 李妍汶.四种植物分别组成的生物滞留系统滞蓄与净化道路雨水的效应比较[D].重庆: 西南大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10635-1017847187.htm
[18] 毛绪昱, 黄丽萍.基于海绵城市理念的山地城市道路低影响开发设计[J].中国给水排水, 2016, 32(10): 81-85.
[19] 高建平, 潘俊奎, 谢义昌.生物滞留带结构层参数对道路径流滞蓄效应影响[J].水科学进展, 2017, 28(5): 702-711.
[20] READ J, FLRTCHER T D, WEVILL T, et al. Plant traits that enhance pollutant removal from stormwater in biofiltration systems[J]. International Journal of Phytoremediation, 2009, 12(1): 34-53. doi: 10.1080/15226510902767114
[21] CHAPMAN C, HORNER R R. Performance assessment of a street-drainage bioretention system[J]. Water Environment Research, 2010, 82(2): 109-119. doi: 10.2175/106143009X426112
[22] MEI Y, GAO L, ZHOU H, et al. Ranking media for multi-pollutant removal efficiency in bioretention[J]. Water Science & Technology, 2018, 77(8): 2023-2035.
[23] 钱程, 穆文平, 王康, 等.基于主成分分析的地下水水质模糊综合评价[J].水电能源科学, 2016, 34(11): 31-35.
[24] NIRMAL K J I, MANISHITA D, RANA M, et al. Assessment of hydrochemical characteristics of a tropical wetland system using principal component analysis: A case study[J]. Journal of Environmental Sciences, Hyderabad, 2011, 5(1): 37-50.
[25] DONG F, YONG L, HAN S, et al. Uncertainty-based multi-objective decision making with hierarchical reliability analysis under water resources and environmental constraints[J]. Water Resources Management, 2016, 30(2): 805-822. doi: 10.1007/s11269-015-1192-7
[26] DING S, SU C, YU J. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162. doi: 10.1007/s10462-011-9208-z
[27] QIANG Y G, ZHANG M S, LI Z B. The BP neural network model of soil water-salt dynamic state analysis[J]. Advanced Materials Research, 2013, 668: 928-932. doi: 10.4028/www.scientific.net/AMR.668
[28] HATT B E, FLETCHER T D, DELETIC A. Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes[J]. Water Science & Technology, 2007, 56(12): 11-19.
[29] BRATIERES K, FLETCHER T D, DELETIC A, et al. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study[J]. Water Research, 2008, 42(14): 3930-3940. doi: 10.1016/j.watres.2008.06.009
[30] 王书敏.山地城市面源污染时空分布特征研究[D].重庆: 重庆大学, 2012.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2164438
[31] TAYLOR G D, FLETCHER T D, WONG T H F, et al. Nitrogen composition in urban runoff-implications for stormwater management[J]. Water Research, 2005, 39: 1982-1989. doi: 10.1016/j.watres.2005.03.022
[32] GLAISTER B J, FLETCHER T D, COOK P L M, et al. Interactions between design, plant growth and the treatment performance of stormwater biofilters[J]. Ecological Engineering, 2017, 105: 21-31. doi: 10.1016/j.ecoleng.2017.04.030
[33] HATT B E, FLETCHER T D, DELETIC A. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems[J]. Water Research, 2007, 41(12): 2513-2524. doi: 10.1016/j.watres.2007.03.014
[34] 国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
[35] 周俊, 江驹, 余朝军, 等.改进神经网络动态逆着舰控制方法[J].哈尔滨工程大学学报, 2018, 39(10): 1649-1654.
[36] DAVIS A P, HUNT W F, TRAVE R G, et al. Bioretention technology: Overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
[37] 仇付国, 代一帆, 卢超, 等.基质改良和结构优化强化雨水生物滞留系统除污[J].中国给水排水, 2017, 33(7): 157-162.
[38] 章茹, 李艳根, 刘志超, 等.植物及存水区对南方生物滞留池去污效果的影响[J].环境工程, 2017, 35(8): 29-33.
[39] ZINGER Y, BLECKEN G T, FLETCHER T D, et al. Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone[J]. Ecological Engineering, 2013, 51(2): 75-82.
[40] NEUSCHUTZ C, GREGER M. Ability of various plant species to prevent leakage of N, P and metals from sewage sludge[J]. International Journal of Phytoremediation, 2010, 12: 67-84.
[41] 李立青, 胡楠, 刘雨情, 等. 3种生物滞留设计对城市地表径流溶解性氮的去除作用[J].环境科学, 2017, 38(5): 1881-1888.
[42] 颜子钦, 李立青, 刘雨情, 等.设置饱和带对生物滞留去除地表径流中N、P的影响[J].中国给水排水, 2017, 33(11): 33-38.
[43] MINETT D A, COOK P L, KESLER A J, et al. Root effects on the spatial and temporal dynamics of oxygen in sand-based laboratory-scale constructed biofilters[J]. Ecological Engineering, 2013, 58: 414-422. doi: 10.1016/j.ecoleng.2013.06.028
[44] 陈垚, 程启洪, 甘春娟, 等.雨水生物滞留系统氮素过程研究现状与展望[J].环境工程, 2018, 36(7): 11-16.
[45] 张军, 张松, 柏双友, 等.生物滞留系统的水文效应与污染物的去除研究[J].环境工程, 2015, 33(8): 17-21.
[46] 罗艳红, 李海燕, 陈富强.双层填料生物滞留设施对磷的去除效果研究[J].环境污染与防治, 2017, 39(1): 7-10.
[47] YANG X H, MEI Y, HE J, et al. Comprehensive assessment for removing multiple pollutants by plants in bioretention systems[J]. Chinese Science Bulletin, 2014, 59(13): 1446-1453. doi: 10.1007/s11434-014-0200-2