[1] |
陈能场, 郑煜基, 何晓峰, 等. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692.
|
[2] |
DZOMBAK D A. Remediation of metals-contaminated soils and groundwater[J]. MIT System Dynamics in Education Project, 1997, 485(9): 3-22.
|
[3] |
徐清, 张立新, 刘素红, 等. 表层土壤重金属污染及潜在生态风险评价: 包头市不同功能区案例研究[J]. 自然灾害学报, 2008, 17(6): 6-12.
|
[4] |
王夏芳. 铜离子对环境危害现状及对策研究[J]. 国土与自然资源研究, 2015(1): 55-57.
|
[5] |
刘婉, 李泽琴. 水中铬污染治理的研究进展[J]. 广东微量元素科学, 2007, 14(9): 5-9.
|
[6] |
黄敏, 杨海舟, 余萃, 等. 武汉市土壤重金属积累特征及其污染评价[J]. 水土保持学报, 2010, 24(4): 135-139.
|
[7] |
邢英, 张永航, 韦万丽, 等. 生物炭钝化修复镉、铅、铜和砷污染土壤的研究进展[J]. 贵州农业科学, 2015, 43(7): 193-197.
|
[8] |
曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7): 1441-1453.
|
[9] |
赵海亮, 赵海光, 段怡君, 等. 生物炭对土壤中复合重金属的固化/稳定化研究[J]. 四川环境, 2017(6): 161-164.
|
[10] |
何陈. 稳定纳米零价铁的制备与修复土壤中六价铬的研究[D]. 上海: 上海大学, 2015.
|
[11] |
XU Y H, ZHAO D Y. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Research, 2007, 41(10): 2101-2108.
|
[12] |
孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 4715-4723.
|
[13] |
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901.
|
[14] |
张小毛, 陈维芳, 晏长成, 等. 液相还原和碳热法制备纳米零价铁/活性炭复合材料的比较研究[J]. 水资源与水工程学报, 2015, 26(3): 129-135.
|
[15] |
LAMBRECHTS T, COUDER E, BERNAL M P, et al. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test[J]. Water, Air, & Soil Pollution, 2011, 217(1/2/3/4): 333-346.
|
[16] |
刘芬. 株洲地区土壤pH值测定方法研究[J]. 农业环境科学学报, 1998, 17(2): 84-85.
|
[17] |
陈才丽, 张进, 成应向, 等. 骨炭和硫化钠联用修复镉-锌污染土壤[J]. 环境工程学报, 2015, 9(8): 4069-4074.
|
[18] |
陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4): 2528-2534.
|
[19] |
XU G, SUN J N, SHAO H B, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62(1): 54-60.
|
[20] |
HAN W J, FU F L, CHENG Z H, et al. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater[J]. Journal of Hazardous Materials, 2015, 302: 437-446.
|
[21] |
李丹. 纳米零价铁/生物质碳复合材料的制备及在镍废水处理中的应用[D]. 太原: 山西大学, 2017.
|
[22] |
谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向[J]. 土壤, 2011, 43(6): 857-861.
|
[23] |
吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37(10): 3959-3967.
|
[24] |
YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 96-104.
|
[25] |
杨亚鸽, 崔立强, 严金龙, 等. 镉污染土壤生物质炭修复的化学稳定机制[J]. 安徽农业科学, 2013, 41(5): 2044-2046.
|
[26] |
UCHIMIYA M, CHANG S, KLASSON K T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups[J]. Journal of Hazardous Materials, 2011, 190(1): 432-441.
|
[27] |
YUAN J H, XU R K, WEI Q, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils & Sediments, 2011, 11(5): 741-750.
|
[28] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99(3): 19-33.
|
[29] |
NOUBACTEP C. Comments on “Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS)”[J]. Industrial & Engineering Chemistry Research, 2009, 47(7): 2131-2139.
|
[30] |
SHI L N, LIN Y M, ZHANG X, et al. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2011, 171(2): 612-617.
|
[31] |
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86.
|
[32] |
JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229-230(5): 145-150.
|
[33] |
唐行灿, 陈金林, 张民. 生物炭对铜、铅、镉复合污染土壤的修复效果[J]. 广东农业科学, 2014, 41(12): 67-71.
|
[34] |
李雨清, 何江, 吕昌伟, 等. 富里酸对重金属在沉积物上吸附及形态分布的影响[J]. 环境科学, 2016, 37(3): 1008-1015.
|
[35] |
杨林, 陈志明, 刘元鹏, 等. 石灰、活性炭对铬污染土壤的修复效果研究[J]. 土壤学报, 2012, 49(3): 518-525.
|
[36] |
PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil & Tillage Research, 2011, 112(2): 159-166.
|
[37] |
GODLEWSKA P, SCHMIDT H P, YONG S O, et al. Biochar for composting improvement and contaminants reduction: A review[J]. Bioresource Technology, 2017, 246: 193-202.
|
[38] |
STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009, 41(6): 1301-1310.
|
[39] |
韩剑宏, 李艳伟, 张连科, 等. 生物炭和脱硫石膏对盐碱土壤基本理化性质及玉米生长的影响[J]. 环境工程学报, 2017, 11(9): 5291-5297.
|
[40] |
李中阳, 齐学斌, 樊向阳, 等. 生物质炭对冬小麦产量、水分利用效率及根系形态的影响[J]. 农业工程学报, 2015, 31(12): 119-124.
|
[41] |
韦建玉, 金亚波, 杨启港, 等. 植物铁营养研究进展Ⅱ: 铁运输与铁有关的分子生物学基础[J]. 安徽农业科学, 2007, 35(33): 10589-10593.
|
[42] |
LU K P, YANG X, SHEN J J, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola[J]. Agriculture Ecosystems & Environment, 2014, 191: 124-132.
|