[1] |
PAPAGEORGIOU M, KOSMA C, LAMBROPOULOU D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece[J]. Science of the Total Environment, 2016, 543: 547-569.
|
[2] |
EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerging Contaminants, 2017, 3(1): 1-16.
|
[3] |
YANG L, HE J T, SU S H, et al. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China[J]. Environmental Science & Pollution Research International, 2017, 24(18): 1-14.
|
[4] |
NA L, WEI J X, DONG X L, et al. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake[J]. China Environmental Science, 2017, 37(9): 3515-3522.
|
[5] |
WANG J, WANG S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review[J]. Journal of Environmental Management, 2016, 182: 620-640.
|
[6] |
BOHDZIEWICZ J, KUDLEK E, DUDZIAK M. Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment[J]. Desalination & Water Treatment, 2016, 57(3): 1552-1563.
|
[7] |
LIANG R, LUO S, JING F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B:Environmental, 2015, 176-177(3): 240-248.
|
[8] |
FRONTISTIS Z, DROSOU C, TYROVOLA K, et al. Experimental and modeling studies of the degradation of estrogen hormones in aqueous TiO2 suspensions under simulated solar radiation[J]. Industrial & Engineering Chemistry Research, 2017, 51: 16552-16563.
|
[9] |
MIRZAEI A, CHEN Z, HAGHIGHAT F, et al. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review[J]. Sustainable Cities and Society, 2016, 27: 407-418.
|
[10] |
PAN D, JIAO J, LI Z, et al. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation[J]. ACS Sustainable Chemistry & Engineering, 2015, 8(9): 191-197.
|
[11] |
KUVAREGA A T, KRAUSE R W M, MAMBA B B. Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation[J]. Journal of Physical Chemistry C, 2016, 115(45): 22110-22120.
|
[12] |
SUNITA K, SANDEEP K, ASHOK K G. Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible-light photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1487-1499.
|
[13] |
FRONTISTIS Z, ANTONOPOULOU M, PETALA A, et al. Photodegradation of ethyl paraben using simulated solar radiation and Ag3PO4 photocatalyst[J]. Journal of Hazardous Materials, 2017, 323: 478-488.
|
[14] |
CHEN W, NIU X, WANG J. A photocatalyst of graphene oxide (GO)/Ag3PO4 with excellent photocatalytic activity over decabromodiphenyl ether (BDE-209) under visible light irradiation[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2017, 356: 304-311.
|
[15] |
WANG P Q, CHEN T, YU B, et al. Tollen s-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 267-274.
|
[16] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696): 666-669.
|
[17] |
余长林, 魏龙福, 李家德,等. GO/Ag3PO4复合光催化剂的制备、表征及光催化性能[J]. 物理化学学报, 2015, 31(10): 1932-1938.
|
[18] |
MIAO X, YUE X, SHEN X P, et al. Nitrogen-doped carbon dots modified Ag3PO4/GO photocatalyst with excellent visible-light-driven photocatalytic performance and mechanism insight[J]. Catalysis Science & Technology, 2018, 8: 632-641.
|
[19] |
GUEX L G, SACCHI B, PEUVOT K F, et al. Experimental review: Chemical reduction of grapheneoxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry[J]. Nanoscale, 2017, 9(27): 9562-9571.
|
[20] |
LIANG Q, SHI Y, MA W, et al. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets[J]. Physical Chemistry Chemical Physics, 2012,14(45): 15657-15665.
|
[21] |
LIU J, REN H, JIAO Q J, et al. The influence of GO/RGO on the thermal decomposition of HNIW[J]. Integrated Ferroelectrics, 2014, 152(1): 127-136.
|
[22] |
翁程杰, 史叶勋, 何大方, 等. 水热法制备还原氧化石墨烯及其导电性调控[J]. 化工学报, 2018, 69(7): 3263-3269.
|
[23] |
YANG X, CUI H, LI Y, et al. Fabrication of Ag3PO4-graphene composites with highly efficient andstable visible light photocatalytic performance[J]. ACS Catalysis, 2013, 3(3): 363-369.
|
[24] |
徐国梅.以腰果酚型液态苯并噁嗪为基体的氧化石墨烯复合材料及含磷和钼阻燃材料的研究[D]. 合肥:合肥工业大学, 2016.
|
[25] |
FAN X, SHAO J, LI Z, et al. Facile synthesis of rGO/Ag3PO4 by enhanced photocatalytic degradation of an organic dye using a microwave-assisted method[J]. New Journal of Chemistry, 2016, 40(2): 1330-1335.
|
[26] |
孙梅香, 刘会应, 刘松,等. 光电-Fenton体系中羟基自由基生成影响因素分析[J]. 环境工程学报, 2017, 11(6): 3391-3398.
|
[27] |
曾小龙. TiO2光催化光生电子反应机理研究[D]. 广州:暨南大学, 2013.
|
[28] |
GAO X, PENG W, TANG G, et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys & Compounds, 2018, 757: 455-465.
|
[29] |
JIAN X, LEI L, GUO C, et al. Photocatalytic degradation of carbamazepine by tailored BiPO4: Efficiency, intermediates and pathway[J]. Applied Catalysis B: Environmental, 2013, 130(6): 285-292.
|